
stdin, stdout, stderr

stdout and stderr

Many programs make output to "standard out" and "standard error" (e.g. the
print command goes to standard out, error messages go to standard error).

By default, both are written to the screen, but you can redirect each of them
(next slide).

They are often referred to as “streams” (information streams).

These two streams are available directly to you via the sys module:
sys.stdout and sys.stderr.

Write to stdout and stderr with file write-like statements:

sys.stdout.write("blah blah\n")

sys.stderr.write("read 6 sequences, analysis complete\n")

When you use a program with these outputs, you can direct each stream into files

as follows (stdout to fileA and stderr to fileB):

python myprog.py > fileA 2> fileB

Users of command line programs often expect to find these two sorts of outputs,

which typically correspond to the main intended output of the program (stdout)

and error or progress messages (stderr).

Writing and redirecting

Standard input

standard in is analogous to standard out.

sys.stdin is a data stream that you can use in your program
as if it were reading from a file:

for line in sys.stdin:

do something with each line

Under some circumstances it is ideal to allow a user to provide input EITHER
from a file OR from stdin:

if fileName != None:

inStream = open(fileName)

else:

inStream = sys.stdin

after this the code is identical for either data source

[the same pattern can be used for writing to a file or stdout]

Why bother with stdin?

Writing and reading files is often a slow step in program execution.

Though you can treat sys.stdin as if it were an open file, in fact it is sitting in
RAM.

Suppose I have a tree-building program that can take a sequence alignment from
stdin or a file, and a program that can write a sequence alignment either to
stdout or to a file. These are equivalent:

align_prog.py infile > alnfile

tree_prog alnfile > outtree

or
align_prog.py infile | tree_prog > outtree

The first version has to write the alignment to a file, then read it again. The
second version never reads or writes the alignment. That “|” symbol is read
"pipe" and connects the two programs via stdout and stdin.

stdout piped directly
to stdin

prog > file write stdout to file
prog >> file append stdout to file
prog 2> file write stderr to file
prog 2>> file append stderr to file
progA | progB pipe stdout progA to stdin progB
prog < file read from file to stdin prog

Redirection syntax

Running programs from inside a Python program

You can easily run other programs from inside a Python program:

import os

os.system("someProg myFile.txt > outFile.txt")

the Python program pauses until someProg is complete

someProg can be any kind of program (Python or something else)

now that someProg is done, we can access its output

of = open("outFile.txt")

for line in of:

< blah blah >

[fyi there are much more complex ways of controlling external programs, including
setting parameters, tracking progress, handling errors etc.]

string that is exactly
what you would have

typed at the command line
to run someProg

Sample Problem 1

Write a program that reads a file and makes two kinds of output:

the number of words in the file on stdout and the number of lines

in the file on stderr. Do NOT read the whole file at once in case it

is very large.

If you finish early, try running your program and redirecting one or

both output streams to files.

import sys

lineNum = 0; wordNum = 0 # this syntax is allowed, handy

of = open(sys.argv[1])

for line in of:

lineNum += 1

wordNum += len(line.split())

of.close()

outPrefix = "file " + sys.argv[1] + " has " # another handy trick

sys.stdout.write(outPrefix + str(wordNum) + " words\n")

sys.stderr.write(outPrefix + str(lineNum) + " lines\n")

Answer 1

Sample Problem 2

Write a program that reads either a file or stdin and writes to

stdout a list of all the words in the input in alphabetical order (one

per line). TIP – use a dict.

Set it up so that if the program gets a command line argument, it

expects it to be a file name, and if NOT it reads stdin.

You can use the following command to make sure it works right:

cat filename | python myprog.py

This should give the same result as python myprog.py filename

import sys

if len(sys.argv) > 1:

instream = open(sys.argv[1])

else:

instream = sys.stdin

wordDict = {}

for line in instream:

for word in line.split():

wordDict[word] = None # we won’t use value so don’t waste memory

instream.close()

words = wordDict.keys()

words.sort()

for word in words:

print word # or sys.stdout.write(word + "\n")

Answer 2

remember each key appears once in a
dict – a word that appears multiple
times in the stream will write over
the key after the first appearance

Challenge Problems

1) Write a program that takes EITHER the output of your program

in Problem 2 OR a specified file and makes as output a count of the

number of words found.

2) In problem 2, instead of making a list of all the words, count how

many times each word appears and make as output each word and its

count (use a dict with count as value).

