Computing a tree

http://faculty.washington.edu/jht/GS559_2017/

Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Defining what a "tree" means

...divergence time is the sum of (horizontal) branch lengths

A tree has topology and distances

Are these different trees?

Topologically, these are the SAME tree. In general, two trees are the same if they can be inter-converted by branch rotations.

The number of tree topologies grows extremely fast

There are many rooted trees for each unrooted tree

For each <u>unrooted</u> tree, there are 2N - 3 times as many <u>rooted</u> trees, where N is the number of leaves (# internal branches = 2N - 3).

20 leaves - 564,480,989,588,730,591,336,960,000,000 topologies

How can you compute a tree?

Many methods available, we will talk about:

Distance trees Parsimony trees

Others include:

Maximum-likelihood trees Bayesian trees

Distance tree methods

• Measure pairwise 'distance' between each pair of sequences.

• Use a clustering method to build up a tree, starting with the closest pair.

	1	2	3	4	5	6
human	а	g	t	С	t	С
chimp	а	g	а	g	t	С
gorilla	C	g	g	С	а	g
orangutan	С	g	g	g	а	C

human - chimp has 2 changes out of 6 sites human - orang has 4 changes of out 6 sites etc.

Distance matrix from alignment

	human	chimp	gorilla	orang
human	0	2/6	4/6	4/6
chimp		0	5/6	3/6
gorilla			0	2/6
orang				0

(symmetrical, lower left not filled in)

Distance matrix methods

 Methods based on a set of pairwise sequence distances, typically from a multiple alignment.

- Try to build the tree that best matches the distances.
- Usual standard for "best match" is the least squares of the tree distances compared to the real pairwise distances:

Let D_m be the real (matrix) distances and D_t be the tree distances. Find the tree (with associated D_t) that <u>minimizes</u>:

$$\sum_{i=1}^{N} \left(D_{t} - D_{m} \right)^{2}$$

Enumerate and score all trees

• Enumerate every tree topology, fit least-squares best distances for each topology, keep best.

• Not used for distance trees - there is a much faster way to get very close to correct.

• Called Neighbor-Joining algorithm, one of a general class called hierarchical clustering algorithms.

• I will show a slightly simpler algorithm called UPGMA (Unweighted Pair Group Method with Arithmetic Mean).

Sequential clustering approach (UPGMA)

Sequential clustering algorithm

- 1) generate a table of pairwise sequence distances and assign each sequence to a list of N tree nodes.
- 2) look through the current list of nodes (initially these will all be leaf nodes) for the pair with the smallest distance.
- 3) merge the closest pair, remove the pair of nodes from the list and add back the merged node to the list.
- 4) repeat until there is only one node left it is the root.

 $D_{n1,n2} = \frac{1}{N} \sum_{i} \sum_{j} d_{ij}$ distance when there are multiple sequences in a node

where *i* is each leaf of n1 (node1), *j* is each leaf of n2 (node2),

and *N* is the number of distances summed (=i * j)

(in words, this is the arithmetic average of the distances between all the leaves in one node and all the leaves in the other node)

Neighbor-Joining Algorithm (side note)

Essentially as for UPGMA, but correction for distance to other leaves is made.

Specifically, for sets of leaves *i* and *j*, we denote the set of all <u>other</u> leaves as *L*, and the size of that set as |L|, and we compute the corrected distance D_{ij} as:

$$D_{ij} = d_{ij} - (r_i + r_j)$$
 (d_{ij} is calculated as before)
where

$$r_i = \frac{1}{|L|} \sum_{k \in L} d_{ik}$$
 and $r_j = \frac{1}{|L|} \sum_{k \in L} d_{jk}$

(the mean distance from i to all 'other' leaves)

Raw distance correction

- As two DNA sequences diverge, it is easy to see that their maximum raw distance is ~0.75 (assuming equal nt frequencies).
- This graph shows evolutionary distance related to raw distance:

Mutational models for DNA

- Jukes-Cantor (JC) all mutations occur at the same rate.
- Kimura 2-parameter (K2P) transitions and transversions have separate rates.
- Generalized Time Reversible (GTR) all changes may have separate rates.

(Models similar to GTR are also available for protein)

	G	Α	Т	С	
G	1-3α	α	α	α	
Α	α	1-3α	α	α	
Т	α	α	1-3α	α	
С	α	α	α	1-3α	

Jukes-Cantor

Jukes-Cantor model - distance correction

Jukes-Cantor model:

$$D = -\frac{3}{4}\ln(1 - \frac{4}{3}D_{raw})$$

 D_{raw} is the raw distance (what we directly measure)

D is the corrected distance (what we want)

In is natural log

Note - similar calculations can be made for the other models, in particular K2P and GTR are often used (but more complex).

Distance trees - summary

• Compute pairwise distances and convert each to a corrected distance.

• Build tree (UPGMA or neighbor-joining).

• Notice that these methods do <u>not</u> consider all tree topologies - they are very fast, even for large trees.

Data structure for a tree

The tree itself is made up of **TreeNode** objects, each of which is connected to other **TreeNode** objects based on its three attributes.

How do we know a node is a leaf? A root?

A leaf (or tip) has no child nodes. A root has no parent node. All the rest have all three.