
dictionaries
(aka hash tables or hash maps)

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Review

• You should be comfortable with loops by now. I will
post more problems on loops if you want practice.

• Pay attention to program robustness, speed, and
memory use.

• Start trying to write clean compact code.

• Account for very large or very small input files (or
lists, etc).

• A dictionary organizes linked information.

• Examples:
- word and definition
- name and phone number
- name and DNA sequence
- username and password

• If you know the first entry, you can quickly and
easily get the second one.

• Accessing a dict entry is fast, but not quite as
fast as indexing in a list or string.

Dictionaries

Rules for dictionaries

• The first item is a key.

• Each key can appear only once in a dict.

• A key must be an immutable object: number, string,
or tuple.

• Lists cannot be keys (they are mutable).

• The key is the item you'll use to do look-ups.

• Each key is paired with a value.

Key examples

Phone book: we have a name, we want a number

Name is the key, number is the value

Crank call prevention: we have a number, we want a name

Number is the key, name is the value

Creating a dictionary

#create an empty dictionary

myDict = {}

#create a dictionary with three entries

myDict = {"Curly":4123, "Larry":2057, "Moe":1122}

#add another entry

myDict["Shemp"] = 2232

#change Moe's phone number

myDict["Moe"] = 4040

#delete Moe from dictionary

del myDict["Moe"]

Using a dictionary

>>> myDict = {"Curly":4123, "Larry":2057, "Moe":1122}

>>> myDict["Moe"]

1122

>>> myDict.keys()

['Larry', 'Moe', 'Curly']

>>> "Curly" in myDict

True

>>> "curly" in myDict

False

>>> myDict.values()

[2057, 1122, 4123]

>>> len(myDict)

3

the keys are not in any
particular order!

curly is not the same as Curly

get all the keys as a list

get all the values as a list

the number of key:value pairs

Making a useful dictionary
Suppose we have a file that gives the alignment score for a
large number of sequences:

seq1 <tab> 37

seq2 <tab> 182

etc.

import sys

openFile = open(sys.argv[1], "r")

scoreDict = {}

for line in openFile:

fields = line.strip().split("\t")

scoreDict[fields[0]] = float(fields[1])

myFile.close()

we now have a dictionary where we can look up a score for any name

Sorting a dictionary by key

birthdays is a dictionary with names as keys

and birth dates as values

bkeys = birthdays.keys() # birthday is a dictionary

bkeys.sort()

for person in bkeys:

print "Send", person, "a card on", birthdays[person]

Uses the list.sort() method -
if the list contains strings,

they will be sorted
alphanumerically

dict basics
D = {'dna':'T','rna':'U'} # dictionary literal assignment

D = {} # make an empty dictionary

D.keys() # get the keys as a list

D.values() # get the values as a list

D['dna'] # get a value based on key

D['dna'] = 'T' # set a key:value pair

del D['dna'] # delete a key:value pair

D.pop('dna') # remove key:value (and return value)

'dna' in D # True if key 'dna' is found in D, else False

The keys must be immutable objects (e.g. string, int, tuple).

The values can be anything (including a list or another dictionary).

The order of elements in the list returned by D.keys() or D.values()
is arbitrary (effectively random).

Each key can be stored only once in the dictionary, so if you set the
value for a key for a second time it OVERWRITES the old value!

Sample problem #1

The file "scores.txt" (linked from the web site) contains blastn
scores for a large number of sequences with a particular query.
Write a program that reads them into a dictionary, sorts them by
sequence name, and prints them.

>python sort_dict.py scores.txt

seq00000 293

seq00001 315

seq00002 556

seq00003 556

seq00004 617

seq00005 158

etc.

File format:

name1 <tab> score

name2 <tab> score

etc.

Solution #1
import sys

myFile = open(sys.argv[1], "r")

make an empty dictionary and populate it

scoreDict = {}

for line in myFile:

fields = line.strip().split("\t")

record each value with name as key

scoreDict[fields[0]] = float(fields[1])

myFile.close()

get key list and sort it

keys = scoreDict.keys()

keys.sort()

print based on sorted keys

for key in keys:

print key + "\t" + str(scoreDict[key])

Sample problem #2

Suppose you have a list of sequence names whose scores you are
interested in extracting from the large list of scores (in the same
file "scores.txt"). Modify your previous program to read a list of
sequence names from a second file and print the scores for just
those sequences. A sample "seq_names.txt" is linked from the web
site.

>python get_scores.py scores.txt seq_names.txt

seq00036 784

seq57157 523

seq58039 517

seq67160 641

seq76732 44

seq83199 440

seq92309 446

If you want to experiment a bit, try putting the names
and scores into two parallel lists. Access the scores by
finding a name match in the first list and using that
index to fetch the score in the second list. Time this
method and compare it to the dict version (use time()
from the time module – see second answer).

import sys

get a list of the names of interest

seqNameFile = open(sys.argv[2], "r")

seqNameList = []

for line in seqNameFile:

seqNameList.append(line.strip())

seqNameFile.close()

make a dictionary of the scores, keyed on name

dictFile = open(sys.argv[1], "r")

scoreDict = {}

for line in dictFile:

fields = line.strip().split("\t")

scoreDict[fields[0]] = int(fields[1])

dictFile.close()

finally, use the dictionary

for seqName in seqNameList:

print seqName + "\t" + str(scoreDict[seqName])

Solution #2

these two code
segments can be
in either order

import sys

import time

get a list of the names of interest

seqNameFile = open(sys.argv[2], "r")

seqNameList = []

for line in seqNameFile:

seqNameList.append(line.strip())

seqNameFile.close()

make a dictionary of the scores, keyed on name

dictFile = open(sys.argv[1], "r")

scoreDict = {}

for line in dictFile:

fields = line.strip().split("\t")

scoreDict[fields[0]] = int(fields[1])

dictFile.close()

startTime = time.time() # time since ref time (in milliseconds)

for seqName in seqNameList:

print seqName + "\t" + str(scoreDict[seqName])

print "elapsed time:", (time.time()-startTime), "ms"

Time it!

elapsed time

Challenge problems

2. Sort the list of scores in the same file (scores.txt) by
score, with the highest scoring first. Print the sequence name
and its score in that order. You can do this using a dictionary
(ignore the fact that more than one sequence may have the
same score, so some may get lost).

1. Extend your program in sample problem 2 so that it gives
useful user feedback when a sequence name is missing from
the dictionary.

Challenge 1 solution
import sys

get a list of the names of interest

seqNameFile = open(sys.argv[2], "r")

seqNameList = []

for line in seqNameFile:

seqNameList.append(line.strip())

seqNameFile.close()

make a dictionary of the scores, keyed on name

dictFile = open(sys.argv[1], "r")

scoreDict = {}

for line in dictFile:

fields = line.strip().split("\t")

scoreDict[fields[0]] = int(fields[1])

dictFile.close()

finally, use the dictionary

for seqName in seqNameList:

if not seqName in scoreDict:

print seqName, "not found"

else:

print seqName + "\t" + scoreDict[seqName]

import sys

dictFile = open(sys.argv[1], "r")

scoreDict = {}

for line in dictFile:

fields = line.strip().split("\t")

scoreDict[int(fields[1])] = fields[0]

dictFile.close()

sortKeys = scoreDict.keys()

sortKeys.sort()

sortKeys.reverse() # sort makes ascending sort for numbers

for key in sortKeys:

print scoreDict[key] + "\t" + key

Challenge 2 solution

