Whole genome alignments

http://faculty.washington.edu/jht/GS559_2017/

Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Extreme value distribution

S is data score, x is test score, μ is mode, λ is width

Summary score significance

- Most statistical tests compare observed data to the expected result according to a <u>null hypothesis</u>.
- Sequence similarity scores of unrelated sequences follow an <u>extreme value distribution</u>, which is characterized by a long tail.
- The <u>p-value</u> associated with an alignment score is the area under the curve to the right of that score.
- The <u>E-value</u> is derived from the p-value accounting for multiple testing. It is the expected number of times that a given score would appear in a randomized database.

Whole genome alignments

Why?

- genome-wide alignment data (efficient)
- inference of shared (orthologous) genes across species
- genome evolution
- curiosity (an under-appreciated motivation)

GQSQVGQGPPCPHHRCTTCCPDGCHFEPQVCMCDWESCCEEG GQSEVRQGPQCPYHKCIKCQPDGCHYEPTVCICREKPCDEKG

How are genome-wide alignments made?

- \bullet mouse and human genomes are each about 3×10^9 nucleotides.
- how many calculations would a dynamic programming alignment have to make?
- at a <u>minimum</u> 3 integer additions and 3 inequality tests for <u>each DP matrix position</u>
- DP matrix size is 3×10^9 by 3×10^9
- about 6 x (3x3x10¹⁸) = 5.4x10¹⁹ calculations!

Age of the universe is about 4.3×10^{17} seconds

(there are other big problems too, including assuming colinearity)

BLAST whole genome against another

- Runtime (my desktop) for mouse vs. human, about 24 hours*
- Extract best match segments, reverse blast
- Keep <u>reciprocal best match</u> regions as anchors (the full process is a bit more involved and includes anchor collinearity).
- Schematic of part of results:

* megablastn with repeat-masked human genome

Dynamic programming after BLAST matching

 $M \times N$ manageable