
loops continued and coding
efficiently

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

for vs. while loops

• for is natural to loop through all elements of
something of determinate size.

• while is natural to loop an indeterminate
number of times until some condition is met.

Review

Mnemonic: Four-D (for determinate), Whindy (while indeterminate)

Smart loop use

• if you don't know how many times you want to loop, use
a while loop (otherwise use a for loop).

• loop through a list until you reach some list value

queryVal = "Gotterdammerung"

i = 0

while i < len(someList) and someList[i] != queryVal:

i += 1

print "value at list position", i+1

tests whether element
matches query

ensures loop doesn't
run past end of list

YOUR PLAN? for with break, while with test

Read files efficiently

Read a file and print the first ten lines

import sys

infile = open(sys.argv[1], 'r')

lineList = infile.readlines()

infile.close()

for i in range(10):

print lineList[i].strip() Does this work?

YES

NO!

Is it good code?

What if the file has a million lines? (not uncommon in bioinformatics)

this statement reads
all million lines!!

import sys

infile = open(sys.argv[1], "r")

for i in range(10):

print infile.readline().strip()

infile.close()

How about this instead?

this version reads only
the first ten lines, one

at a time

import sys

infile = open(sys.argv[1], "r")

lineList = infile.readlines()

infile.close()

for i in range(10):

print lineList[i].strip()

import sys

infile = open(sys.argv[1], "r")

counter = 0

while counter < 10:

print infile.readline()

counter += 1

infile.close()

This while loop does the same thing:

• The original readlines() approach takes much longer on large
files AND it has to store ALL the data in memory.

• I ran original version and efficient version on a very large file.

• Original version ran for 45 seconds and crashed when it ran out
of memory.

• Improved version ran successfully in << 1 sec.

What if the file has fewer than ten lines?
import sys

infile = open(sys.argv[1], "r")

for i in range(10):

print infile.readline().strip()

infile.close()

The program above prints blank lines repeatedly - not ideal

when readline() reaches the end of a file, it returns ""
(empty string) but a blank line in the middle of a file returns "/n"

import sys

infile = open(sys.argv[1], "r")

for i in range(10):

line = infile.readline()

if line == "":

break

print line.strip()

infile.close()

Improved version:

test for end of file

Keep only needed data

Suppose you want to work with a subset of file lines (say
those with a match to some string):

lines = openFile.readlines()

for line in lines:

if "Elizabeth Bennet" in line:

<do something>

for line in openFile:

if "Elizabeth Bennet" in line:

<do something>

OR

Memory allocation efficiency
index = 0

curIndex = 0

while True:

curIndex = hugeString[index:].find(query)

if curIndex == -1:

break

index += curIndex

print index

index += 1 # move past last match

First version makes a NEW large string in memory every time
through the loop - very very slow!

Second version uses the same string every time but starts search at
different points in memory. Ran 10x to 1000x faster in test searches.

index = 0

while True:

index = hugeString.find(query, index)

if index == -1:

break

print index

index += 1 # move past last match

be wary if you
are splitting
strings a lot

when query is
not found, find()
returns -1

….
hugeString in memory

search 1

….
…

hugeString in memory

search 1
search 2

search 3
search 4

hugeString.find(query, index)

To figure out where to start this search, the computer just adds
index to the position in memory of the 0th byte of hugeString
and starts the search there - very fast.

….

new hugeString in memory

copy bytes

search 2
etc. (one copy for every search)

hugeString[index:]

• This sort of issue arises in many contexts, not
just string slicing

• Always be aware of what your code is doing with
memory

index = hugeString.find(query)

while index != -1:

print index

index += 1 # start just after last match

index = hugeString.find(query, index)

Same find method, avoiding while True

N.B. review later

Sequential splitting of file contents

Many problems in text parsing can employ this strategy:

• First, read file content in chunks (often lines)

• Second, split each chunk to extract the needed data

• This can be repeated - split each chunk into subchunks, extract
needed data from subchunks.

import sys

openFile = open(sys.argv[1], "r")

for line in openFile:

fieldList = line.strip().split("\t")

for field in fieldList:

<do something with field>

How many levels of splitting does this do? 2

shorthand way to read
each line in a file

General tips for improving your code

• Write compact code as long as it is clear to read.

• Consider whether you do things that are unnecessary.

• If you write code that seems clunky, think carefully about how to
make it nice and clean (fewer lines, clearer flow, etc.).

• Don't waste memory by keeping information you don't need.

• When reading from files, read (and store in memory) only what
you need.

• Persistent storage (e.g. hard drive) is large but slow to read and
write. Volatile storage (RAM or just “memory”) is smaller but fast.

NB solid-state drives are faster but still pretty slow

Sample problem #1

Write a program read-lines.py that prints the Ith through
Jth lines from a file, where I, J, and filename are command-line
arguments. Be sure it handles very short and very long files
correctly and efficiently.

> python read-N-lines.py 1 7 file.txt

this

file

has

five

lines

> python read-N-lines.py 2 3 file.txt

file

has

>

Solution #1

import sys

start = int(sys.argv[1]) – 1 # change to zero-based

end = int(sys.argv[2])

infile = open(sys.argv[3], "r")

counter = 0

while counter <= start:

counter += 1

line = infile.readline()

while counter <= end and line != "":

print line.strip()

line = infile.readline()

counter += 1

infile.close()

It is tempting to read all the lines and use a for loop because
it is simpler, but not a good design if file might be large.

Solution #1 alt
import sys

start = int(sys.argv[1]) – 1 # change to zero-based

end = int(sys.argv[2])

infile = open(sys.argv[3], "r")

counter = 0 # count lines read

for line in infile: # read every line but only print those wanted

if counter >= end: # terminate when past end

break

if counter >= start: # only print when past start

print line.strip()

counter += 1 # increment counter every line

infile.close()

Notice that this also reads lines one at a time starting at the beginning
of the file. It “throws away” lines until counter is in range and breaks
the loop when counter is beyond range. This is functionally identical to
the other solution.

Sample problem #2
Write a program find-match.py that prints all the lines from
the file cfam_repmask.txt (linked from the web site) in which
the 11th text field exactly matches "CfERV1", with the number of
lines matched and the total number of file lines at the end. Make
the file name, the search term, and the field number command-line
arguments. (11th is one-based counting)

[The file is an annotation of all the repeat sequences known in the
dog genome. It is 4,533,479 lines long. Each line has 17 tab-
delimited text fields.]

You will know you got it right if the "CfERV1" match count is 1,168.

(If you use the smaller file cfam_repmask2.txt, the count should
be 184.) With the large file, your program should run in about 10-
20 seconds (500K – 1M lines per second!).

import sys

if len(sys.argv) != 4:

print("USAGE: three arguments expected")

sys.exit()

query = sys.argv[1] # get the search term

fnum = int(sys.argv[2]) - 1 # get the field number

hitCount = 0 # initialize hit and line counts

lineCount = 0

infile = open(sys.argv[3]) # open the file

for line in infile: # for each line in file

lineCount += 1

fields = line.split('\t')

if fields[fnum] == query: # test for match

print line.strip()

hitCount += 1

infile.close()

print hitCount, "matches,", lineCount, "lines"

Solution #2

Remark - in Problem #2 it is a bad idea to read all the
lines at once with f.readlines().

Even though the problem requires you to read every
line in the file, the best solution uses minimal memory
because it never stores more than one line at a time.

Challenge problem 1

Extend sample problem 2 so that there is an optional
4th argument that specifies a minimum repeat length
to report a match. (In the file, fields 7 and 8 are
integers that indicate the genomic start and end
positions of the repeat sequence.)

You should get 341 matches for the 11th field query
"CfERV1" and a minimum genomic length of 1000. (If
you use the smaller file cfam_repmask2.txt, there
should be 63 matches)

import sys

if len(sys.argv) < 4:

print("USAGE: at least three arguments expected")

sys.exit()

query = sys.argv[1]

fnum = int(sys.argv[2]) - 1

minSpan = 0 # set a default so that any match passes

if len(sys.argv) == 5: # get the optional min length

minSpan = int(sys.argv[4])

hitCount = 0

lineCount = 0

of = open(sys.argv[3])

for line in of:

lineCount += 1

fields = line.split('\t')

if fields[fnum] == query:

span = int(fields[7]) - int(fields[6])

if span >= minSpan:

print line.strip()

hitCount += 1

of.close()

print hitCount, "matches,", lineCount, "lines"

Solution to challenge problem 1

Challenge problem 2 etc

Modify sample problem 2 so that the number of matches and number of
lines prints BEFORE the specific matches (often useful for the user,
because the output has a summary first, followed by specifics). Solution
on next slide.

Modify sample problem 2 so that you won't get an error if the number
of fields on a line is too small (e.g. suppose you are testing field 9 but
there is a blank line somewhere in the file).

Modify again so that you report lines in the file that don't have enough
fields to match your request. Report the line number (e.g. line 39 etc),
which will help a user edit a file that has mistakes in it.

Write a program that tests that every line in a file has some expected
number of fields and reports those that don't. Modify the program so
you remove those that don't rather than reporting them.

import sys

if (len(sys.argv) != 4):

print("USAGE: three arguments expected")

sys.exit()

query = sys.argv[1]

fnum = int(sys.argv[2]) - 1

lineCount = 0

matchLines = [] # initialize the list to hold match lines

of = open(sys.argv[3])

for line in of:

lineCount += 1

fields = line.split('\t')

if fields[fnum] == query:

matchLines.append(line.strip()) # put line in list

of.close()

print len(matchLines), "matches,", lineCount, "lines"

for line in matchLines:

print line

The trick is simple - make a list that will hold the matched lines,
rather than printing them as you go. Print the list at the end.

(note also that matchLines implicitly gives the number of matched lines)

One possible problem is that, if the number of matched lines is huge, you could
run out of memory.

