
while loops

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Hints on variable names
• Pick names that are descriptive

• Change a name if you decide there’s a better choice

(use search and replace to be sure you don't miss any).

•Use the name to describe the type of object

• Very locally used names can be short and arbitrary

listOfFileLines = myFile.readlines()

seqString = "GATCTCTATCT"

myDPMatrix = [[0,0,0],[0,0,0],[0,0,0]]

intSum = 0

for i in range(len(listOfInts)):

intSum = intSum + listOfInts[i]

(more code)

Comment your code!

• Any place a # sign appears, the rest of the line is a comment
(ignored by program).

• Blank lines are also ignored – use them to visually group code.

import sys

query = sys.argv[1]

myFile = open(sys.argv[2], "r")

lineList = myFile.readlines() # put all the lines from a file into a list

now process each file line to remove the \n character, then

search the line for query and record each result in a list of ints

intList = []

for line in lineList:

position = line.find(query)

intList.append(position)

etc.

for loop review

block of code

for <element> in <object>:

<statement>

<statement>

. . .

<last statement>

• <element> is a newly created variable name. You can access
the variable only inside the loop.

• <object> is a container of 1 or more <element>s and it must
already exist.

• range() will make a list of ints “on the fly”

for index in range(0,100):

<statement>

don’t forget
the colon!

while loop

while <conditional test>:

<statement1>

<statement2>

. . .

<last statement>

While some test is True keep running the loop, exit
when False.

The conditional test syntax is the same as for if and
elif statements, and can be arbitrarily complex.

Similar to for loop

What does this program do?

sum = 0

count = 1

while count < 10:

sum += count # adjust sum

count += 1 # increment count

print count # should be 10

print sum # should be 45

for vs. while

• you will probably use for loops more.

• for is natural to loop through a list,
characters in a string, etc. (anything of
determinate size).

• while is natural to loop an indeterminate
number of times until some condition is met.

for base in sequence:

<do something with each base>

for sequence in database:

<do something with each sequence>

for index in range(5,200):

<do something with each index>

Examples of for loops

Examples of while loops

while error > 0.05:

<do something that will reduce error>

while score > 0:

<traceback through a DP matrix, each

time setting the current score>

Warning: if you write a while loop and the conditional test
stays True, the loop will run forever (infinite loop).

Reminder - comparison operators

• Boolean: and, or, not

• Numeric: < , > , ==, !=, >=, <=

• String: in, not in

< is less than

> is greater than

== is equal to

!= is NOT equal to

<= is less than or equal to

>= is greater than or equal to

Comparisons evaluate to True or False

Terminating a loop

• continue : jumps to the top of the enclosing loop

• break : breaks completely out of the enclosing loop

while loops use continue and break in the same
way as for loops:

One of the arts of programming is seeing how
to write elegant loops that do complex things
(one simple step at a time).

It takes time and practice.

x += 1

is the same as

x = x + 1

A common idiom in Python (and other languages). It's never necessary,
but people use it frequently. Also works with other math operators:

x += y # adds y to the value of x

x *= y # multiplies x by the value y

x -= y # subtracts y from x

x /= y # divides x by y

Shorthand reminder

program exit

In addition to accessing command-line arguments, the
sys module has many other useful functions (look
them up in the Python docs).

import sys

Make sure we got one argument on the command line.

if len(sys.argv) != 2:

print "USAGE: one argument expected"

sys.exit()

<argument count correct, continue program>

sys.exit() # exit program immediately

In use:

Sample problem #1

• Write a program add-arguments.py that reads any
number of integers from the command line and prints
the cumulative total for each successive argument
using a while loop.

> python add-arguments.py 1 2 3

1

3

6

> python add-arguments.py 1 4 -1

1

5

4

Solution #1

import sys

total = 0

i = 1

while i < len(sys.argv):

total += int(sys.argv[i])

print total

i += 1

Sample problem #2

Write a program count-fasta.py that counts the
number of fasta sequences in a file specified on the
command line. Use either a while loop or a for loop.

>identifier1 [optional comments]

AAOSIUBOASIUETOAISOBUAOSIDUGOAIBUOABOIUAS

AOSIUDTOAISUETOIGLKBJLZXCOITLJLBIULEIJLIJ

>identifier2 [optional comments]

TXDIGSIDJOIJEOITJOSIJOIGJSOIEJTSOE

>identifier3

Etc.

Fasta format:

sequence on any number
of lines until next line
that starts with “>”

Two files are linked on the course web page – run your program on
both: small.fasta and large.fasta

Solution #2
import sys

Make sure we got an argument on the command line.

if (len(sys.argv) != 2):

print "USAGE: one file argument required"

sys.exit()

Open the file for reading.

fasta_file = open(sys.argv[1], "r")

lineList = fastaFile.readlines()

fasta_file.close()

num_seqs = 0

for line in lineList:

Increment if this is the start of a sequence

if (line[0] == ">"): # parentheses are optional

num_seqs += 1

print num_seqs

Not required, but a
good habit to get into

Challenge problem
Write a program seq-len.py that reads a file of
fasta sequences and prints the name and length of
each sequence and their total length.

>seq-len.py seqs.fasta

seq1 432

seq2 237

seq3 231

Total length 900

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

myFile.close() # we read the file, now close it

cur_name = "" # initialize required variables

cur_len = 0

total_len = 0

first_seq = True # special variable to handle the first sequence

for line in myLines:

if (line.startswith(">")): # we reached a new fasta sequence

if (first_seq): # if first sequence, record name and continue

cur_name = line.strip()

first_seq = False # mark that we are done with the first sequence

continue

else: # we are past the first sequence

print cur_name, cur_len # write values for previous sequence

total_len += cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len += len(line.strip())

print cur_name, cur_len # write the last values

print “Total length", total_len

Challenge problem solution 1

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

myFile.close() # we read the file, now close it

cur_name = myLines[0] # initialize required variables

cur_len = 0

total_len = 0

for index in range(1, len(myLines)):

line = myLines[index]

if (line.startswith(">")): # we reached a new fasta sequence

print cur_name, cur_len # write values for previous sequence

total_len += cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len += len(line.strip())

index += 1

print cur_name, cur_len # write the last values

print "Total length", total_len

Another solution (slightly more compact but has the
disadvantage that it assumes the first line is a fasta name)

Here is a simpler solution, but it won't work if there are internal '>'
characters, which are technically allowed in fasta names.

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

whole_string = myFile.read()

myFile.close()

seqBlockList = whole_string.split(">") # split into blocks on ">"

total_len = 0

for seq in seqBlockList:

lineList = seq.split("\n") # split the block on new lines

length = len("".join(lineList[1:])) # get the length of the sequence

total_len += length

print lineList[0], length

print "Total length", total_len

What this does is split the text of the entire file on “>”, which gives a list of
strings (each containing the sequence with its name). Each of these strings is
split at “\n” characters, which gives a list of lines. The 0th line in this list is the
name, and the rest of the lines are sequence.

import sys

from Bio import Seq

from Bio import SeqIO

filename = sys.argv[1]

myFile = open(filename, "r")

seqRecords = SeqIO.parse(myFile, "fasta")

total_len = 0

for record in seqRecords:

print record.name, len(record.seq)

total_len += len(record.seq)

print "Total length", total_len

myFile.close()

By the way, here is the challenge problem solution
done using BioPython (which you may learn about later)

shorter and much easier to write and understand

