
for loops

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Reminders

• use if - elif - else statements for conditional
code blocks

• memorize the logical operators (==, !=, <=, etc.)

• code blocks share the same indentation

• indexing and slicing always use [] - e.g. myString[0]

• functions always use () - e.g. len(myString)

for loop

• Allows you to perform an operation on each
element in a list (or character in a string).

for <element> in <object>:

<statement>

<statement>

...

<statement> # unindented - loop ended

code block

M
u

s
t
b
e

in
d
e
n
te

d

New variable name
available inside loop

Must already be
defined before loop

Looping on a list

>>> for name in ["Donald", "Benito", "Adolf"]:

... print "Hello", name

...

Hello Donald

Hello Benito

Hello Adolf

>>>

Here we loop on a list

Another example

>>> for intval in [0, 1, 2]:

... print intval

... print intval * intval

...

0

0

1

1

2

4

Looping on a string

>>> DNA = 'AGTCGA'

>>> for base in DNA:

... print "base =", base

...

base = A

base = G

base = T

base = C

base = G

base = A

>>>

think of the string as
a list of characters

(NB – the object to loop on has to be “iterable”, meaning it allows elements to be
accessed sequentially, which includes list and string objects.)

Indexing inside loop
• If needed, use an integer variable to keep track of a numeric

index during looping.

>>> index = 0 # initialize index

>>> for base in DNA:

... index = index + 1 # increment index

... print "base", index, "is", base

...

base 1 is A

base 2 is G

base 3 is T

base 4 is C

base 5 is G

base 6 is A

>>> print "The sequence has", index, "bases"

The sequence has 6 bases

>>>

the increment operation
is so common there is a
shorthand: index += 1

index is still a
valid variable

after loop

The range() function

• The range() function provides a list of
integers covering a specified range.

range([start,] stop [,step])

>>>range(5)

[0, 1, 2, 3, 4]

>>>range(2,8)

[2, 3, 4, 5, 6, 7]

>>> range(-1, 2)

[-1, 0, 1]

>>> range(0, 8, 2)

[0, 2, 4, 6]

>>> range(0, 8, 3)

[0, 3, 6]

>>> range(6, 0, -1)

[6, 5, 4, 3, 2, 1]

[optional arguments],
default to 0 and 1

Using range() in a for loop

>>> for val in range(0,5):

... print val, "squared is", val * val

...

0 squared is 0

1 squared is 1

2 squared is 4

3 squared is 9

4 squared is 16

range() produces a list of integers (so this is really
looping over a list)

Nested loops

>>> for i in [1, 2, 3]:

... for j in [4, 5]:

... print i * j

...

4

5

8

10

12

15

short names
for locally used

variables

Nested loops
>>> index = 0

>>> for i in [1, 3, 5]:

index += 1

print 'outer loop pass ' + str(index) + ':'

... for j in [4, 5]:

... print i * j

...

outer loop pass 1:

4

5

outer loop pass 2:

12

15

outer loop pass 3:

20

25

clarifying what the
nested loops are doing…

Terminating a loop

• break jumps out of the enclosing loop

>>> for index in range(0,3):

... if (index == 2):

... break

... print index

...

0

1

Skipping in a loop

• continue jumps to the top of the enclosing loop

>>> for index in range(0, 4):

... if (index == 1):

... continue

... print index

...

0

2

3

for <element> in <object>:

<block>

range(<start>, <stop>, <increment>)

break – break out of a loop

continue – jump to the top of the loop

Perform <block> for each
element in <object>.

Define a list of ints. <start>
and <increment> are optional,
default to 0 and 1. Increment
can be negative (go backwards
with start > stop)

Summary

You now know everything you need to
know to write quite complex programs.

There's a lot more to learn, but you
could now (for example) write a
sequence alignment program.

If you don't understand the solutions to problem 3
and the challenge problem, go over them carefully
until they are crystal clear. Notice that each part is
simple - it their organization that builds them into a
complex program.

Work a problem from the inside out - e.g. decide
what values you want to extract, then figure out how
to extract them.

Use print to show intermediate values as you go
(then remove or comment-out the print statements).

Sample problem #1
• Write a program add-arguments.py that reads any

number of integers from the command line and prints
the cumulative total for each successive argument.

> python add-arguments.py 1 2 3

1

3

6

> python add-arguments.py 1 4 -1 -3

1

5

4

1
Tip - remember that sys.argv
is a list of command line strings.

Solution #1

import sys

total = 0 # initialize total

for each argument, increment

the total and print it

for argVal in sys.argv[1:]:

total = total + int(argVal)

print total

slice off
program name

import sys

total = 0 # initialize total

for each argument, increment

the total and print it

for i in xrange(1, len(sys.argv)):

total += int(sys.argv[i])

print total

Alternative solution #1

Slightly faster because you don’t have to slice the list

skip program
name

Note - xrange same as range but doesn’t create a list – faster if list is large

Sample problem #2

• Write a program word-count.py that prints
the number of words on each line of a file.

> cat hello.txt

Hello, world!

How ya doin’?

> python count-words.py hello.txt

2

3
Don't worry about punctuation -

just assume white-space-
separated strings are words

Solution #2
import sys

myFile = open(sys.argv[1], "r")

fileLines = myFile.readlines()

myFile.close()

for line in fileLines:

words = line.split()

print len(words)

alternative for loop

for i in range(0, len(fileLines)):

words = fileLines[i].split()

print len(words)

Sample problem #3 (harder)
Write a program variance.py that reads a
specified BLOSUM score matrix file and computes
the variance of scores for each amino acid. Assume
the matrix file has tab-delimited text with the data
as shown on the next page. Download the example
"matrix.txt" from the course web page.

> python variance.py matrix.txt

A 2.17

R 4.05

N 5.25

D 5.59

etc.

2()
var

1

x

N

where x is each value, is the mean of

values, and N is the number of values

Each line has 21 text
fields separated by
20 tabs

I removed the top aa name line for simplicity (and
the ambiguity/stop lines at the end)

Solution #3
import sys

openFile = open(sys.argv[1], "r")

fileLines = openFile.readlines()

openFile.close()

varianceList = [] # make list for variances

aaList = [] # make list for amino acid names

for i in range(0, len(fileLines)):

fields = fileLines[i].strip().split() # strip removes new line etc.

scoreList = [] # list of scores for this line

for j in range(1, len(fields)): # skip the 0th field

scoreList.append(int(fields[j])) # convert to int and append

scoreSum = 0

for score in scoreList: # add all the scores to compute the mean

scoreSum += score

mean = float(scoreSum) / len(scoreList) # compute mean using float math

squareSum = 0

for score in scoreList: # compute the numerator of variance

squareSum += (score - mean) * (score - mean)

variance = float(squareSum) / (len(scoreList) - 1) # compute variance

aaList.append(fields[0]) # append the aa code to list

varianceList.append(variance) # append the variance to list

now print the two lists out in parallel

for i in range(0, len(aaList)):

print aaList[i] + '\t' + "%.2f" % varianceList[i]

This may seem complex, but each part of it is very simple. We will soon learn
how to write functions, which will make this code much easier to read.

FYI - a version written with a function (not covered yet in class)

def variance(fields): # write function once and forget

scoreList = [] # list of scores for these fields

for i in range(0, len(fields)):

scoreList.append(int(fields[i]))

scoreSum = 0

for score in scoreList:

scoreSum += score

mean = float(scoreSum) / len(scoreList) # compute mean using float math

squareSum = 0

for score in scoreList: # compute the numerator of variance

squareSum += (score - mean) * (score - mean)

return float(squareSum) / (len(scoreList) - 1) # compute variance, return

import sys
openFile = open(sys.argv[1], "r")
fileLines = openFile.readlines()
openFile.close()

varianceList = [] # make list for variances

aaList = [] # make list for aa names

for i in range(0, len(fileLines)): # loop over the lines

fields = fileLines[i].strip().split() # strip is precautionary

aaList.append(fields[0]) # append the aa code to list

varianceList.append(variance(fields[1:])) # append the variance to list

now print the lists out in parallel

for i in range(0, len(aaList)):

print aaList[i] + '\t' + "%.2f" % varianceList[i]

the core of this program is just the four bracketed lines - easy to read

Challenge problem
Write a program seq-len.py that reads a file of
fasta format sequences and prints the name and
length of each sequence and their total length.

>seq-len.py seqs.fasta

seq1 432

seq2 237

seq3 231

Total length 900

Here’s what fasta sequences look like:
>foo

gatactgactacagttt

ggatatcg

>bar

agctcacggtatcttag

agctcacaataccatcc

ggatac

>etc…

('>' followed by name, newline, sequence
on any number of lines until next '>')

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

fileLines = myFile.readlines()

myFile.close() # we read the file, now close it

cur_name = None # initialize required variables

cur_len = 0

total_len = 0

first_seq = True # special variable to handle the first sequence

for line in fileLines:

if (line.startswith(">")): # we reached a new fasta sequence

if (first_seq): # if first sequence, record name and continue

cur_name = line.strip()

first_seq = False

continue

else: # we are past the previous sequence

print cur_name, cur_len # write values for previous sequence

total_len = total_len + cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len = cur_len + len(line.strip())

print cur_name, cur_len # print the values for the last sequence

print "Total length", total_len

Challenge problem solution

challenge - write this more compactly (e.g. you don't really need the first_seq flag)

import sys

openFile = open(sys.argv[1], "r")

fileLines = openFile.readlines() # read file

openFile.close()

cur_name = None # initialize required variables

cur_len = 0

total_len = 0

for line in fileLines:

if (line.startswith(">")): # we reached a new fasta sequence

if (cur_name == None): # if first sequence, record name and continue

cur_name = line.strip()

continue

else: # we are past the previous sequence

print cur_name, cur_len # write values for previous sequence

total_len += cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len += len(line.strip())

print cur_name, cur_len # print the values for the last sequence

print "Total length", total_len

Compact version

If you don't understand the solutions to problem 3
and the challenge problem, go over them carefully
until they are crystal clear. Notice that each part is
simple - it their organization that builds them into a
complex program.

Work a problem from the inside out - e.g. decide
what values you want to extract, then figure out how
to extract them.

Use print to show intermediate values as you go
(then remove or comment-out the print statements).

