for loops

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Reminders

e Use if - elif - else statements for conditional
code blocks

* memorize the logical operators (==, =, <=, etc.)
 code blocks share the same indentation
* indexing and slicing always use [] - e.g. myString[0]

* functions always use () - e.g. len (myString)

for loop

* Allows you to perform an operation on each
element in a list (or character in a string).

New variable name Must already be
available inside loop defined before loop
for <element> in <object>:

<statement>
<statement> [~ codeblock

Must be
indented

—

<statement> # unindented - loop ended

Looping on a list

>>> for name in ["Donald", "Benito", "Adolf"]:

print "Hello", name \\\\\

Hello Donald Here we loop on a list
Hello Benito
Hello Adolf
>>>

Another example

>>> for intval in [0, 1, 2]:
print intval
print intval * intval

= MR R O O .

Looping on a string

think of the string as
>>> DNA = 'AGTCGA' a llisT of char'acf'egs

>>> for base in DNA:
print "base =", base

base
base
base
base
base
base
>>>

Il
P Q0 HA QY

(NB - the object to loop on has to be "iterable”, meaning it allows elements to be
accessed sequentially, which includes list and string objects.)

>>> index

base 1 is
base 2 is
base 3 is
base 4 1is
base 5 1is
base 6 1is
>>> print

Indexing inside loop

+ If needed, use an integer variable to keep track of a numeric
index during looping.

=0 # initialize index
>>> for base in DNA:

>N NNHAQEY

"The sequence has",

The sequence has 6 bases

>>>

valid variable
//////// after loop

index,

the increment operation
is so common there is a
shorthand: index += 1

index = index + 1 # increment index
print "base", index, "is", base

index is still a

"bases"

The range () function

+ The range () function provides a list of
integers covering a specified range.

range([start,] sto , Sste
ge ([\] p[/ Pl)

[optional arguments],
default to O and 1

>>>range (5) >>> range (0, 8, 2)
[0, 1, 2, 3, 4] [0, 2, 4, 6]
>>>range (2, 8) >>> range (0, 8, 3)
[2, 3, 4, 5, 6, 7] [0, 3, 6]

>>> range (-1, 2) >>> range(6, 0, -1)

[_1/ O/ 1] [61 5/ 4/ 3/ 2/ 1]

Using range () ina £for loop

>>> for val in range(0,5):
print wval, "squared 1is'", val * wval

squared 1is
squared 1is
squared 1is
squared 1is
squared is 16

= W DR O .
© & B O

range () produces a list of integers (so this is really
looping over a list)

Nested loops

>>> for i in [1, 2, 3]:
for jJ in [4, 5]:
print 1 * j

\ short names

4

5 for locally used
g variables
10

12

Nested loops

>>> index = 0
>>> for i in [1, 3, 5]:
index += 1
print 'outer loop pass ' + str(index) + ':'
for j in [4, 5]:
print 1 * j

outer loop pass 1: —
4 clarifying what the

5 nested loops are doing...

outer loop pass 2:
12
15
outer loop pass 3:
20
25

Terminating a loop
» break jumps out of the enclosing loop

>>> for index in range(0,3):
if (index == 2):
break
print index

Skipping in a loop
-+ continue jumps to the top of the enclosing loop

>>> for index in range (0, 4):
i1f (index == 1):
continue
print index

N O -

Summary

for <element> in <object>:

<block> Perform <block> for each
element in <object>.

range (<start>, <stop>, <increment>)

Define a list of ints. <start>
and <increment> are optional,
default to O and 1. Increment

can be negative (go backwards
with start > stop)

break - break out of aloop
continue - jump to the top of the loop

You now know everything you need to
know to write quite complex programs.

There's a lot more to learn, but you
could now (for example) write a
sequence alignment program.

If you don't understand the solutions to problem 3
and the challenge problem, go over them carefully
until they are crystal clear. Notice that each part is
simple - it their organization that builds them into a
complex program.

Work a problem from the inside out - e.g. decide
what values you want to extract, then figure out how
to extract them.

Use print to show intermediate values as you go
(then remove or comment-out the print statements).

Sample problem #1

+ Werite a program add-arguments.py that reads any
number of integers from the command line and prints
the cumulative total for each successive argument.

> python add-arguments.py 1 2 3
1

3

6

> python add-arguments.py 1 4 -1 -3

1

5

4 Tip - remember that sys.argv
1 is a list of command line strings.

Solution #1

import sys
total = 0 # initialize total

for each argument, increment

the total and print it ro——
for argVal in sys.argv[1l:] :-—— program name

total = total + int(argVal)
print total

Alternative solution #1

Slightly faster because you don't have to slice the list

import sys

total = 0 # initialize total

for each argument, incre

the total and print.:2

for i in xrange(l, len(sys.argv)):
total += int(sys.argv[i])
print total

skip program
hame

Note - xrange same as range but doesn't create a list - faster if list is large

Sample problem #2

+ Write a program word-count.py that prints
the number of words on each line of a file.

> cat hello. txt

Hello, world!

How ya doin’?

> python count-words.py hello. txt
2

3

Don't worry about punctuation -
just assume white-space-
separated strings are words

Solution #2

import sys

myFile = open(sys.argv[l], "r"
filelLines = myFile.readlines ()
myFile.close()

for line in filelines:

words = line.split()

print len (words)

alternative for loop
for i in range(0, len(filelines)):
words = fileLines[i] .split()

print len (words)

Sample problem #3 (harder)

Write a program variance . py that reads a

specified BLOSUM score matrix file and computes
the variance of scores for each amino acid. Assume
the matrix file has tab-delimited text with the data
as shown on the next page. Download the example
"matrix.txt" from the course web page.

> python variance.py matrix. txt

A 2.17
R 4.05 Z(X_ﬂ)z
N 5.25 var="=0_1
D 5.59

where x is each value, u is the mean of
values, and N is the number of values

I removed the top aa name line for simplicity (and

the ambiguity/stop lines at the end)

+—

X >

0V o

+—

ld

oo

4

g e

< O

Q.

0 o

T n W

= 0

o

.md.T

c.YO

W Y o\ |
S | B | Q) B &) Y| B9 | W | O o | N O O | IS | R 5l g
O |G Gk)0 Gk R A St S| R e O B T el Bl

Lo |

QN S SR O A SRR T o e S|P || e AR
=Fr R =R R llendRadle b JRni Bl ri Bt e Al iRl AR R =
v | % | O 5| S O 9|59 9| S| H |8 5|~ W G
AN N—A N A A N N O N AN ||| A || NN
IR I A A A N NN N NN A NN A N A N A A A R N U N N R N R | | I R A R B A B B |
o || O]) R N || e || | R || o] N
T G R o S) S| e | | || B | | et | e
W W & 6w) G SR o)) | R s S| R el o
WG TS R S| R e sk | | N | O Y| R Y
5T | T SR M e | P RS | et m| R e | 1| S| R o | | B
O | ot | O | e O ma) O 5| S | eE| Y| ot S |G el
=Ml R=1Ral Rl Red -l R i ol M R Bl o el B =] e f o] B
% |0 O N | T || wy| S| |] S SR A
il KT R =1 =T RS H TR I AR B =0 it Bl Il =1 Rl Il B =1 el R B
olMmMioninlglonstsinn|d| A O N[O A=A N|N| A
| I I I R | El | =] “=0=]1] =) =1 =g] e ey cre EE] ET] ol
o B of| | 90 i) &) G| S| B S| S0 5t S| |] o 5
Voo d|No|o|o|d4|N VoWV V| o T VD
T | o @) M e x| AN B | PR CRY el o T S0 o |G AR
ad B R L B A R R R R R e e R
<|lx|ZO0l0|Jlw | T —|-|x w|oa|lwv|- S| 5

Solution #3

openFile = open(sys.argv[1l], "r")
fileLines = openFile.readlines|()
openFile.close()

variancelList = [] # make list for variances

aalist = [] # make list for amino acid names

for i in range (0, len(filelines)):
fields = fileLines[i].strip() .split() # strip removes new line etc.
scorelist = [] # list of scores for this line

for j in range(l, len(fields)): # skip the Oth field
scorelist.append(int (fields[j])) # convert to int and append
scoreSum = 0
for score in scorelist: # add all the scores to compute the mean
scoreSum += score
mean = float(scoreSum) / len(scorelList) # compute mean using float math
squareSum = 0
for score in scorelist: # compute the numerator of variance
squareSum += (score - mean) * (score - mean)
variance = float(squareSum) / (len(scorelList) - 1) # compute variance
aalist.append(fields[0]) # append the aa code to list
variancelList.append(variance) # append the variance to list
now print the two lists out in parallel
for i in range (0, len(aalist)):
print aalList[i] + '\t' + "%.2f" % varianceList[i]

This may seem complex, but each part of it is very simple. We will soon learn
how to write functions, which will make this code much easier to read.

FYTI - a version written with a function (not covered yet in class)

def variance(fields): # write function once and forget
scorelist = [] # list of scores for these fields
for i in range (0, len(fields)):
scorelist.append(int(fields[i]))
scoreSum = 0
for score in scorelist:
scoreSum += score

mean = float(scoreSum) / len(scorelList) # compute mean using float math
squareSum = 0
for score in scorelist: # compute the numerator of variance
squareSum += (score - mean) * (score - mean)
return float(squareSum) / (len(scorelList) - 1) # compute variance, return

import sys

openFile = open(sys.argv[1l], "r")
fileLines = openFile.readlines|()
openFile.close()

variancelist = [] make list for wvariances

it
aalist = [] # make list for aa names
for i in range (0, len(filelines)): # loop over the lines
fields = filelLines[i] .strip() .split() # strip is precautionary
aalist.append(fields[0]) # append the aa code to list
variancelist.append (variance (fields[1:])) # append the variance to list
now print the lists out in parallel
for i in range (0, len(aalist)):

print aalList[i] + '\t' + "%.2f" % varianceList[i]

the core of this program is just the four bracketed lines - easy to read

Challenge problem

Write a program seg-len.py that reads a file of
fasta format sequences and prints the name and
length of each sequence and their total length.

>seq-len.py seqgs.fasta

seql 432 Here's what fasta sequences look like:
seq2 237 >foo

seq3 231 gatactgactacagttt
ggatatcg

Total length 900 Sbar
agctcacggtatcttag
agctcacaataccatcc
ggatac
>etc..

('>' followed by name, newline, sequence
on any number of lines until next '>")

import sys

filename = sys.argv[1l]
myFile = open(filename, "r")
filelines = myFile.readlines()

myFile.close()

cur_name = None

cur_len = 0
total_len =0
first seq = True

for line in filelines:
if (line.startswith(">")):
if (first seq):

cur_name
first seq = False
continue

else:

print cur name, cur_ len

total len =
cur name = line.strip()
cur_len = 0
else:
cur_len =

print cur name, cur_ len

total len + cur_len

Challenge problem solution

we read the file, now close it
initialize required variables
special variable to handle the first sequence

we reached a new fasta sequence

if first sequence, record name and continue

line.strip()

we are past the previous sequence

write values for previous sequence
increment total len

record the name of the new sequence
reset cur len

still in the current sequence, increment length

cur_len + len(line.strip())

print the values for the last sequence

print "Total length", total len

challenge - write this more compactly (e.g. you don't really need the first seq flag)

Compact version

import sys

openFile = open(sys.argv[1l], "r")
fileLines = openFile.readlines() #
openFile.close()

read file

cur name = None # initialize required variables

cur_len = 0
total len = 0
for line in filelines:
if (line.startswith(">")): # we
if (cur_name == None): # if

cur name = line.strip()

reached a new fasta sequence

first sequence, record name and continue

continue
else: # we are past the previous sequence
print cur name, cur len # write values for previous sequence
total len += cur_ len # increment total len
cur name = line.strip() # record the name of the new sequence
cur len = 0 # reset cur len
else: # still in the current sequence, increment length

cur_len += len(line.strip())
print cur name, cur len #
print "Total length", total len

print the values for the last sequence

If you don't understand the solutions to problem 3
and the challenge problem, go over them carefully
until they are crystal clear. Notice that each part is
simple - it their organization that builds them into a
complex program.

Work a problem from the inside out - e.g. decide
what values you want to extract, then figure out how
to extract them.

Use print to show intermediate values as you go
(then remove or comment-out the print statements).

