How blast works

http://faculty.washington.edu/jht/GS559_2017/

Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Fast alignment searches

• Most common method is the BLAST search (Basic Local Alignment Search Tool). Initial step is different from dynamic programming alignment.

 Search sequence broken into small words (usually 3 residues long for proteins). 20 * 20 * 20 = 8,000 protein words. These act as seeds for searches.

• The target dataset is <u>pre-indexed</u> for all positions that have an ungapped match for each word above some score threshold (using a score matrix, by default BLOSUM62).

BLAST searches

• For example, the <u>search</u> sequence word "WVH" might score above threshold with these indexed sequences:

Indexed word	Score			
WVH	23			
WIH	22			
WVY	17			
WIY	16			

•

• Target sequences around each indexed word hit are retrieved and match is extended in both directions:

Schematic of indexed matches

Result - instead of aligning these 3 amino acids to <u>everything</u>, they are aligned only with the tiny fraction of sequence regions that are good candidates for a valid alignment.

Extension and scoring		
	Match Score:	Total Score:
QSVFEWVHLLPGA WIY	16	16
QSVFEWVHLLPGA WIY <mark>Q</mark>	-3	13
QSVFEWVHLLPGA WIYQ <mark>K</mark>	-2	11
QSVFEWVHLLPGA WIYQK A	-1	10

Extension termination and Reporting

• Extension continued until alignment score drops below some threshold.

• Extensions whose maximal score is above some threshold are kept for reporting. Traceback starts at maximal score.

• For web interfaces, various formatting, links, and overviews are added.

• It is easy to set up blast on your local computer; useful for custom databases and automation.

Key to speed: word matching and prior indexing

- Only a very small part of total search space is analyzed.
- Word positions are indexed prior to the search, so the relevant parts of search space are reached quickly.

• Tradeoff is sensitivity – occasionally matches will be missed (e.g. when differences are common and dispersed enough that no local words match above threshold).

Blast match statistics

• E-value (expect value) reports number of matches of this score (or higher) expected if the database were composed of random sequences.

• <u>Scores</u> (aka bit scores) are independent of database size. They simply measure the quality of the specific alignment found.

• <u>E-values</u> are DEPENDENT on database size (in a random dataset, the more data, the more likely you are to find a match of a given score or higher.)

link	link			score			
Accession	g significant arguments: Description	Max score	Total score		Ouery coverage	A E value	Links
YP 001206898.1	voltage-dependent potassium channel [Bradyrhizobium sp. ORS278]	45.1	45.1		97%	2e-04	G
YP 001203097.1	hypothetical protein BRAD00944 [Bradyrhizobium sp. ORS278]	42.7	42.7		90%	6e-04	G
YP 422725.1	Kef-type K+ transporter NAD-binding component [Magnetospirillum magneticum AMB-1]	42.7	42.7		90%	7e-04	G
NP 774496.1	hypothetical protein blr7856 [Bradyrhizobium japonicum USDA 110]	42.7	42.7		97%	8e-04	G
ZP 00054971.2	COG1226: Kef-type K+ transport systems, predicted NAD-binding component [Magnetospi	41.6	41.6		90%	0.001	_
ZP 01903404.1	Potassium channel protein [Roseobacter sp. AzwK-3b]	41.2	41.2		90%	0.002	
YP 001241318.1	voltage-dependent potassium channel [Bradyrhizohium sp. BTAi1]	40.8	40.8		97%	0.003	G
ZP 01056912.1	notassium channel protein [Rosenbacter sp. MED193]	40.0	40.0		90%	0.005	-
ZP 00053231.2	COG1226: Kef-type K+ transport systems, predicted NAD-hinding component [Magnetospi	39.7	39.7		97%	0.006	
YP 421023.1	ATP-sensitive inward rectifier notassium channel 10 [Magnetospirillum magneticum AMB-1]	39.7	39.7		92%	0.006	G
YP 423196.1	Kef-type K+ transporter NAD-binding component [Magnetospirillum magneticum AMB-1]	39.7	39.7		97%	0.006	G
YP 759166.1	cation channel family protein [Hyphomonas pentunium ATCC 15444]	39.3	39.3		90%	0.008	G
ZP_00055625.2	COG1226: Kef-type K+ transport systems, predicted NAD-binding component [Magnetosni	38.9	38.9		92%	0.010	
YP 001832925.1	Ion transport 2 domain-containing protein [Beijerinckia indica subsp. indica ATCC 9039]	38.5	38.5		92%	0.015	G
ZP_05085139.1	Ion channel family protein [Resudovibrio on 16062]	38.1	38.1		100%	0.018	
ZP 01753431 1	Potaccium channel protein [Poceobacter on SK200-2-6]	38.1	38.1		87%	0.019	
ZP 01546037.1	evolic pudeotide-binding domain (oNMP-RD) protein [Stappia aggregate IAM 12614]	37.7	37.7		87%	0.021	
NP 772389 1	bypothetical protein bll5749 [Bradyrbizobium japonicum USDA 110]	37.4	37.4		82%	0.021	R
VP 001/19//5 1	nyponeucai protein bilo749 [Bradyniizobidin japonicum osbA 110]	37.4	37.4		65%	0.020	
VD 569407 1	Les trassent eretein [Phodescendemenas adutris BirBE]	37.4	37.4		75%	0.033	
70 05796154 1	ton transport protein (knodopseddononas palastris bisbo)	27.0	37.4		7.5 %	0.034	
ZP 05700134.1	potassium chamel protein [Sincibacter lacuscaerdiensis 111-1157]	37.0	37.0		90 % 07%	0.033	
ZP 05003009.1	Ion transport protein (Pseudovibrio sp. JEU62)	37.0	37.0		97 %	0.037	
<u>(P. 0000(0507.1</u>	Potassium channel protein [Sagittula stellata E-37]	37.0	37.0		90%	0.041	
<u>7P_002362527.1</u>	Ion transport 2 domain protein [Methylocella silvestris BL2]	36.6	36.6		92%	0.046	
<u>4P 949569.1</u>	cyclic nucleotide regulated K+ channel [Rhodopseudomonas palustris CGA009]	36.2	36.2		/5%	0.070	9
<u>TP_001993678.1</u>	cyclic nucleotide-binding protein [Rhodopseudomonas palustris TIE-1]	36.2	36.2		75%	0.070	G
<u>ZP 02151093.1</u>	potassium channel protein, putative [Phaeobacter gallaeciensis 2.10]	35.8	35.8		/5%	0.080	
<u>ZP 05114270.1</u>	transporter, cation channel family [Labrenzia alexandrii DFL-11]	35.8	35.8		87%	0.094	
<u>ZP 05738744.1</u>	Ion transport protein [Silicibacter sp. TrichCH4B]	35.4	35.4		97%	0.11	-
<u>YP 780671.1</u>	cyclic nucleotide-binding protein [Rhodopseudomonas palustris BisA53]	35.4	35.4		75%	0.12	G
YP 533883.1	cyclic nucleotide-binding domain-containing protein [Rhodopseudomonas palustris BisB18]	35.4	35.4		75%	0.12	G
<u>ZP 05052091.1</u>	transporter, cation channel family [Octadecabacter antarcticus 307]	35.4	35.4		87%	0.13	
<u>ZP 01546940.1</u>	potassium channel related protein [Stappia aggregata IAM 12614]	35.0	35.0		87%	0.15	
<u>ZP 05067149.1</u>	Ion transport protein [Octadecabacter antarcticus 238]	35.0	35.0		90%	0.15	
<u>ZP 01437479.1</u>	extracellular solute-binding protein, family 3 [Fulvimarina pelagi HTCC2506]	34.7	34.7		92%	0.17	
YP 484999.1	cyclic nucleotide-binding domain-containing protein [Rhodopseudomonas palustris HaA2]	34.3	34.3		75%	0.25	G
ZP 02189219.1	hypothetical protein BAL199_06269 [alpha proteobacterium BAL199]	<u>33.9</u>	33.9		77%	0.38	
YP 003447642.1	hypothetical protein AZL_004600 [Azospirillum sp. B510]	33.5	33.5		97%	0.45	
<u>YP 571140.1</u>	cyclic nucleotide-binding [Rhodopseudomonas palustris BisB5]	<u>33.1</u>	33.1		75%	0.52	G
ZP 01003918.1	putative potassium channel protein [Loktanella vestfoldensis SKA53]	<u>33.1</u>	33.1		90%	0.56	
YP 001264879.1	TrkA domain-containing protein [Sphingomonas wittichii RW1]	33.1	33.1		62%	0.62	G
YP 001233535.1	voltage-gated potassium channel [Acidiphilium cryptum JF-5]	33.1	33.1		90%	0.63	G
<u>(P 002973442.1</u>	Ion transport 2 domain protein [Rhizobium leguminosarum bv. trifolii WSM1325]	32.7	32.7		85%	0.66	G
ZP 01745766.1	Ion transport protein [Sagittula stellata E-37]	32.7	32.7		92%	0.68	1
ZP 05113853.1	Ion channel family [Labrenzia alexandrii DFL-11]	32.7	32.7		90%	0.77	
YP 001524780.1	ovolio nucleotide-hinding protein [Azorbizohium caulinodans ORS 571]	32.7	32.7		65%	0.81	R
			1		1 1		

You should know...

- How blast speeds up pair alignments.
- A blast alignment is essentially the same as a local DP alignment.
- What an E-value tells you.