
File input and output
and conditionals

Genome 559: Introduction to
Statistical and Computational Genomics

Prof. James H. Thomas

Opening files
• The built-in open() function returns a file object:

<file_object> = open(<filename>, <access type>)

• Python will read, write or append to a file according
to the access type requested:
– 'r' = read
– 'w' = write (will replace the file if it exists)
– 'a' = append (appends to an existing file)

• For example, open for reading a file called "hello.txt":

>>> myFile = open('hello.txt', 'r')

(NB – this opens a file in the present working directory, you can also provide a full path)

Reading a whole text file

• You can read the entire content of the file
into a single string. If the file content is the
text “Hello, world!\n”:

>>> myString = myFile.read()

>>> print myString

Hello, world!

>>>
why is there a

blank line here?

Reading the whole file

• Now add a second line to the file (“How ya
doin’?\n”) and try again.

>>> myFile = open('hello.txt', 'r')

>>> myString = myFile.read()

>>> print myString

Hello, world!

How ya doin'?

>>>

Reading the whole file

• Alternatively, you can read the file into a list
of strings, one string for each line:

>>> myFile = open('hello.txt', 'r')

>>> myStringList = myFile.readlines()

>>> print myStringList

['Hello, world!\n', 'How ya doin'?\n']

>>> print myStringList[1]

How ya doin'?

this file method returns
a list of strings, one for

each line in the file

notice that each line
has the newline

character at the end

Reading one line at a time
• The readlines() method puts all the lines into a list

of strings.
• The readline() method returns only the next line:

>>> myFile = open('hello.txt', 'r')

>>> myString = myFile.readline()

>>> print myString

Hello, world!

>>> myString = myFile.readline()

>>> print myString

How ya doin'?

>>> print myString.strip() # strip the newline off

How ya doin'?

>>>

notice that readline()
automatically keeps track of
where you are in the file - it
reads the next line after the

one previously read

Writing to a file
• Open a file for writing (or appending):
>>> myFile = open('new.txt', 'w') # (or 'a')

• Use the <file>.write() method:

>>> myFile.write('This is a new file\n')

>>> myFile.close()

>>> Ctl-D (exit the python interpreter)
> cat new.txt

This is a new file
always close a file after
you are finished reading

from or writing to it.

open('new.txt', 'w') will overwrite an existing file (or create a new one)
open('new.txt', 'a') will append to an existing file

<file>.write() is a little
different from print

• <file>.write() does not automatically
append a new-line character.

• <file>.write() requires a string as input.

>>> newFile.write('foo')

>>> newFile.write(1)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: argument 1 must be string or read-only

character buffer, not int

>>> newFile.write(str(1)) # str converts to string

(also of course print goes to the screen and <file>.write() goes to a file)

if-elif-else

Conditional code execution
and code blocks

The if statement
>>> if (seq.startswith("C")):

... print "Starts with C"

...

Starts with C

>>>

• A block is a group of lines of code that belong together.

if (<test evaluates to true>):

<execute this block of code>

• In the Python interpreter, the ellipsis … indicates that you are
inside a block (on my Win machine it is just a blank indentation).

• Python uses indentation to keep track of code blocks.

• You can use any number of spaces to indent a block, but you must
be consistent. Using one <tab> is simplest.

• An unindented or blank line indicates the end of a block.

The if statement

• Try doing an if statement without indentation:

>>> if (seq.startswith("C")):

... print "Starts with C"

File "<stdin>", line 2

print "Starts with C"

^

IndentationError: expected an indented block

the interpreter
expects you to be

inside a code block (…)

but it is not indented
properly

Multiline blocks

• Try doing an if statement with multiple lines in the
block.

>>> if (seq.startswith("C")):

... print "Starts with C"

... print "All right by me!"

...

Starts with C

All right by me!

When the if statement is true, all of the lines in the
block are executed (in this case two lines in the block).

Comparison and logic operators

• Boolean: and, or, not

• Numeric: < , > , ==, !=, >=, <=

• String: in, not in

< is less than

> is greater than

== is equal to

!= is NOT equal to

<= is less than or equal to

>= is greater than or equal to

Examples

seq = 'CAGGT'

>>> if ('C' == seq[0]):

... print 'C is first in', seq

...

C is first in CAGGT

>>> if ('CA' in seq):

... print 'CA is found in', seq

...

CA is found in CAGGT

>>> if (('CA' in seq) and ('CG' in seq)):

... print "Both there!"

...

>>>

comparison
operators

the outer parenthesis
pair is optional

Beware!

= versus ==

• Single equal assigns a value.

• Double equal tests for equality.

Combining tests

x = 1

y = 2

z = 3

if ((x < y) and (y != z)):

do something

if ((x > y) or (y == z)):

do something else

Evaluation starts with the innermost parentheses and
works out. When there are multiple parentheses at the
same level, evaluation starts at the left and moves right.
The statements can be arbitrarily complex.

if (((x <= y) and (x < z)) or ((x == y) and not (x == z)))

if-else statements
if <test1>:

<statement>

else:

<statement>

• The else block executes only if <test1> is false.

>>> if (seq.startswith('T')):

... print 'T start'

... else:

... print 'starts with', seq[0]

...

starts with C

>>>

evaluates to
FALSE

if-elif-else

if <test1>:

<block1>

elif <test2>:

<block2>

else:

<block3>

• elif block executes if <test1> is false and
then performs a second <test2>

• Only one of the blocks is executed.

Can be read this way:

if test1 is true then run block1, else if
test2 is true run block2, else run block3

Example

>>> base = 'C'

>>> if (base == 'A'):

... print "adenine"

... elif (base == 'C'):

... print "cytosine"

... elif (base == 'G'):

... print "guanine"

... elif (base == 'T'):

... print "thymine"

... else:

... print "Invalid base!"

...

cytosine

<file> = open(<filename>, 'r'|'w'|'a')

<string> = <file>.read()

<string> = <file>.readline()

<string list> = <file>.readlines()

<file>.write(<string>)

<file>.close()

if <test1>:

<statement(s)>

elif <test2>:

<statement(s)>

else:

<statement(s)>

• Boolean: and, or, not

• Numeric: < , > , ==,
!=, >=, <=

• String: in, not in

Sample problem #1

• Write a program read-first-line.py that takes a
file name from the command line, opens the file,
reads the first line, and prints the line to the screen.

> python read-first-line.py hello.txt

Hello, world!

>

Solution #1

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

firstLine = myFile.readline()

myFile.close()

print firstLine

Sample problem #2

• Modify your program to print the first
line without an extra new line.

> python read-first-line.py hello.txt

Hello, world!

>

Solution #2

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

firstLine = myFile.readline()

firstLine = firstLine[:-1]

myFile.close()

print firstLine

(or use firstLine.strip(), which removes all the whitespace from both ends)

remove last character

Sample problem #3
• Write a program math-two-numbers.py that reads

one integer from the first line of one file and a
second integer from the first line of a second file. If
the first number is smaller, then print their sum,
otherwise print their multiplication. Indicate the
entire operation in your output.

> add-two-numbers.py four.txt nine.txt

4 + 9 = 13

>

Solution #3

import sys

fileOne = open(sys.argv[1], "r")

valOne = int(fileOne.readline()[:-1])

fileOne.close()

fileTwo = open(sys.argv[2], "r")

valTwo = int(fileTwo.readline()[:-1])

fileTwo.close()

if valOne < valTwo:

print valOne, "+", valTwo, "=", valOne + valTwo

else:

print valOne, "*", valTwo, "=", valOne * valTwo

import sys

fileOne = open(sys.argv[1], "r")

valOne = int(fileOne.readline().strip())

fileOne.close()

fileTwo = open(sys.argv[2], "r")

valTwo = int(fileTwo.readline().strip())

fileTwo.close()

if valOne < valTwo:

print valOne, "+", valTwo, "=", valOne + valTwo

else:

print valOne, "*", valTwo, "=", valOne * valTwo

Here's a version that is more robust because it doesn't matter
whether the file lines have white space or a newline:

Sample problem #4 (review)

• Write a program find-base.py that takes as input a
DNA sequence and a nucleotide. The program should
print the number of times the nucleotide occurs in
the sequence, or a message saying it’s not there.

> python find-base.py A GTAGCTA

A occurs twice

> python find-base.py A GTGCT

A does not occur at all

Hint: S.find('G') returns -1 if it can't find the requested string.

Solution #4

import sys

base = sys.argv[1]

sequence = sys.argv[2]

position = sequence.find(base)

if (position == -1):

print base, "does not occur at all"

else:

n = sequence.count(base)

print base, "occurs " + n + "times"

Challenge problems
Write a program that reads a sequence file (seq1) and a sequence (seq2)
based on command line arguments and makes output to the screen that either:

1) says seq2 is entirely missing from seq1, or
2) counts the number of times seq2 appears in seq1, or
3) warns you that seq2 is longer than seq1

> python challenge.py seqfile.txt GATC

GATC is absent

(or

GATC is present 7 times)

(or

GATC is longer than the sequence in seqfile.txt)

TIP – file.read() includes the newline characters from a multiline file

Make sure you can handle multiline sequence files.

Do the same thing but output a list of all the positions where seq2
appears in seq1 (tricky with your current knowledge).

Write a program that is approximates the find and replace
function of word processors. Take as arguments: 1) a string to
find, 2) a string to replace with, 3) input file name, 4) output file
name. You don't really need this, but try to incorporate a
conditional test.

> f_and_r.py Watson Crick infile.txt outfile.txt

(should replace all appearances of "Watson" in the
input file with "Crick".)

Challenge problems

Reading

• First parts of chapters 5 and 14
from Think Python by Downey

