
Numbers, lists and tuples

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Numbers

• Python defines various types of numbers:

– Integer (1234)

– Floating point number (12.34)

– Octal and hexadecimal number (0177, 0x9gff)

– Complex number (3.0+4.1j)

• You will likely only use the first two.

Conversions

>>> 6/2

3

>>> 3.0/4.0

0.75

>>> 3/4.0

0.75

>>> 3*4.0

12.0

>>> 3*4

12

>>> 3/4

0

• The result of a mathematical
operation on two numbers of
the same type is a number of
that type.

• The result of an operation on
two numbers of different
types is a number of the more
complex type.

watch out - integer divisions are
truncated rather than rounded

integer → float

Formatting numbers

• The % operator formats a number.
• The syntax is <format> % <number> where

format is a string

>>> "%f" % 3 # print as float

'3.000000'

>>> "%.2f" % 3 # print as float with

'3.00' # 2 digits after decimal

>>> "%5.2f" % 3 # width 5 characters

' 3.00'

Formatting codes

• %i = integer (or %d)

• %f = float value (decimal number)

• %e = scientific notation

• %g = general, easily readable notation
(uses decimal notation unless there are
too many zeroes, then switches to
scientific notation)

More complex formats

%[flags][width][.precision][code]

Left justify (“-”)
Include numeric sign (“+”)
Fill in with zeroes (“0”)

Number of
digits after

decimal
Total width
of output

i, f, e, g

Examples (review later)
>>> x = 7718

>>> "%i" % x

'7718'

>>> "%-6i" % x

'7718 '

>>> "%06i" % x

'007718'

>>> x = 1.23456789

>>> "%i" % x

'1'

>>> "%f" % x

'1.234568'

>>> "%e" % x

'1.234568e+00'

>>> "%g" % x

'1.23457'

>>> "%g" % (x * 10000000)

'1.23457e+07'

Don’t worry if this all looks like
Greek – you can figure out how
to do these when you need
them in your programs. After a
while they are pretty easy.

It sure looks like Greek to me.

Read as “use the preceding code
to format the following number”

Lists
• A list is an ordered set of objects

>>> myString = "Hillary"

>>> myList = ["Hillary", "Barack", "John"]

• Lists are
– ordered left to right
– indexed like strings (from 0)
– mutable
– possibly heterogeneous (including containing other lists)

>>> list1 = [0, 1, 2]

>>> list2 = ['A', 'B', 'C']

>>> list3 = ['D', 'E', 3, 4]

>>> list4 = [list1, list2, list3] # WHAT?

>>> list4

[[0, 1, 2], ['A', 'B', 'C'], ['D', 'E', 3, 4]]

Lists and dynamic programming

program to print scores in a DP matrix

dpm = [[0,-4,-8], [-4,10,6], [-8,6,20]]

print dpm[0][0], dpm[0][1], dpm[0][2]

print dpm[1][0], dpm[1][1], dpm[1][2]

print dpm[2][0], dpm[2][1], dpm[2][2]

> python print_dpm.py

0 -4 -8

-4 10 6

-8 6 20

G A

0 -4 -8

G -4 10 6

A -8 6 20
this is called a 2-dimensional list
(or a matrix or a 2-dimensional array)

program to print scores in a matrix

dpm = [[0,-4,-8], [-4,10,6], [-8,6,20]]

print "%3i" % dpm[0][0], "%3i" % dpm[0][1], "%3i" % dpm[0][2]

print "%3i" % dpm[1][0], "%3i" % dpm[1][1], "%3i" % dpm[1][2]

print "%3i" % dpm[2][0], "%3i" % dpm[2][1], "%3i" % dpm[2][2]

> python print_dpm.py

0 -4 -8

-4 10 6

-8 6 20

More readable output (review later)

print integers with 3
characters each (default

is right-justified)

>>> L = ["adenine", "thymine"] +

["cytosine", "guanine"]

>>> L

['adenine', 'thymine', 'cytosine',

'guanine']

>>> print L[0]

adenine

>>> print L[-1]

guanine

>>> print L[2:]

['cytosine', 'guanine']

>>> L * 3

['adenine', 'thymine', 'cytosine',

'guanine', 'adenine', 'thymine',

'cytosine', 'guanine', 'adenine',

'thymine', 'cytosine', 'guanine']

>>> L[9]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: list index out of range

Lists and strings are similar

>>> s = 'A'+'T'+'C'+'G'

>>> s

'ATCG'

>>> print s[0]

A

>>> print s[-1]

G

>>> print s[2:]

CG

>>> s * 3

'ATCGATCGATCG'

>>> s[9]

Traceback (most recent call last):
File "<stdin>", line 1, in ?
IndexError: string index out of
range

(you can think of a string as an immutable list of characters)

concatenate

index

slice

multiply

Lists

>>> L = ["adenine", "thymine",
"cytosine", "guanine"]

>>> print L

['adenine', 'thymine', 'cytosine',
'guanine']

>>> L[1] = "uracil"

>>> print L

['adenine', 'uracil', 'cytosine',
'guanine']

>>> L.reverse()

>>> print L

['guanine', 'cytosine', 'uracil',
'adenine']

>>> del L[0]

>>> print L

['cytosine', 'uracil', 'adenine']

Lists can be changed;
strings cannot.

Strings

>>> s = "ATCG"

>>> print s

ATCG

>>> s[1] = "U"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object doesn't support
item assignment

>>> s.reverse()

Traceback (most recent call last):

File "<stdin>", line 1, in ?

AttributeError: 'str' object has no
attribute 'reverse'

reassign element value

delete element

reverse order

More list operations and methods

>>> L = ["thymine", "cytosine", "guanine"]

>>> L.insert(0, "adenine") # insert before position 0

>>> print L

['adenine', 'thymine', 'cytosine', 'guanine']

>>> L.insert(2, "uracil") # insert before position 2

>>> print L

['adenine', 'thymine', 'uracil', 'cytosine', 'guanine']

>>> print L[:2] # slice

['adenine', 'thymine']

>>> L[:2] = ["A", "T"] # replace elements 0 and 1

>>> print L

['A', 'T', 'uracil', 'cytosine', 'guanine']

>>> L[:2] = [] # replace elements 0 and 1 with nothing

>>> print L

['uracil', 'cytosine', 'guanine']

>>> L = ['A', 'T', 'C', 'G']

>>> L.index('C') # find index of first element that is 'C'

2

>>> L.remove('C') # remove first element that is 'C'

>>> print L

['A', 'T', 'G']

Methods for expanding lists
>>> data = [] # make an empty list

>>> print data

[]

>>> data.append("Hello!") # append means "add to the end"

>>> print data

['Hello!']

>>> data.append(5)

>>> print data

['Hello!', 5]

>>> data.append([9, 8, 7]) # append a list to end of the list

>>> print data

['Hello!', 5, [9, 8, 7]]

>>> data.extend([4, 5, 6]) # extend means append each element

>>> print data

['Hello!', 5, [9, 8, 7], 4, 5, 6]

>>> print data[2]

[9, 8, 7]

>>> print data[2][0] # data[2] is a list - access it as such

9

notice that this list contains three
different types of objects: a string, some
numbers, and a list.

Turn a string into a list

str.split() or list(str)

>>> protein = "ALA PRO ILE CYS"

>>> residues = protein.split() # split() uses whitespace

>>> print residues

['ALA', 'PRO', 'ILE', 'CYS']

>>> list(protein) # list() explodes each char

['A', 'L', 'A', ' ', 'P', 'R', 'O', ' ', 'I', 'L',
'E', ' ', 'C', 'Y', 'S']

>>> print protein.split() # the list hasn't changed

['ALA', 'PRO', 'ILE', 'CYS']

>>> protein2 = "HIS-GLU-PHE-ASP"

>>> protein2.split("-") # split at every “-” character

['HIS', 'GLU', 'PHE', 'ASP']

Turn a list into a string

join is the opposite of split:
<delimiter>.join(L)

>>> L1 = ["Asp", "Gly", "Gln", "Pro", "Val"]

>>> print "-".join(L1)

Asp-Gly-Gln-Pro-Val

>>> print "".join(L1)

AspGlyGlnProVal

>>> L2 = "\n".join(L1)

>>> L2

'Asp\nGly\nGln\nPro\nVal'

>>> print L2

Asp

Gly

Gln

Pro

Val

the order might be confusing.
- string to join with is first.
- list to be joined is second.

Tuples: immutable lists
Tuples are immutable. Why? Sometimes you want to guarantee that

a list won’t change.
Tuples support operations but not methods.

>>> T = (1,2,3,4)

>>> T*4

(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)

>>> T + T

(1, 2, 3, 4, 1, 2, 3, 4)

>>> T

(1, 2, 3, 4)

>>> T[1] = 4

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: object doesn't support item assignment

>>> x = (T[0], 5, "eight")

>>> print x

(1, 5, 'eight')

>>> y = list(x) # converts a tuple to a list

>>> print y.reverse()

('eight', '5', '1')

>>> z = tuple(y) # converts a list to a tuple

Basic list operations:
L = ['dna','rna','protein'] # list assignment

L2 = [1,2,'dogma',L] # list hold different objects

L2[2] = 'central' # change an element (mutable)

L2[0:2] = 'ACGT' # replace a slice

del L[0:1] = 'nucs' # delete a slice

L2 + L # concatenate

L2*3 # repeat list

L[x:y] # take a slice from list

len(L) # length of list

''.join(L) # convert a list to string

S.split(x) # convert string to list- x delimited

list(S) # convert string to list – by single character

list(T) # convert a tuple to list

List methods:
L.append(x) # add to the end

L.extend(x) # append each element from x to list

L.count(x) # count the occurrences of x

L.index(x) # give element location of x

L.insert(i,x) # insert at element x at index i

L.remove(x) # delete first occurrence of x

L.pop(i) # extract element i

L.reverse() # reverse list in place – returns None

L.sort() # sort list in place – returns None

Reminder - linked from the course web site is
a Python cheat sheet that contains most of
the basic information we are covering in a
short reference format.

Sample problem #1

• Write a program called dna-composition.py
that takes a DNA sequence as the first
command line argument and prints the number
of A’s, C’s, G’s and T’s.

> python dna-composition.py ACGTGCGTTAC

2 A’s

3 C’s

3 G’s

3 T’s

Solution #1

import sys

sequence = sys.argv[1].upper()

print sequence.count('A'), "A's"

print sequence.count('C'), "C's"

print sequence.count('G'), "G's"

print sequence.count('T'), "T's"

Note - this uses the trick that you can embed single quotes inside a
double-quoted string (or vice versa) without using an escape code.

Sample problem #2

• The object sys.argv is a list of strings.
• Write a program reverse-args.py that

removes the program name from the
beginning of this list and then prints the
remaining command line arguments (no matter
how many of them are given) in reverse order
with asterisks in between.

> python reverse-args.py 1 2 3

3*2*1

> python reverse-args.py A B C D E

E*D*C*B*A

Solution #2

import sys

args = sys.argv[1:]

args.reverse()

print "*".join(args)

Sample problem #3

• The melting temperature (C) of a primer sequence
(with its exact reverse complement) can be estimated
as:

T = 2 * (# of A or T nucleotides) + 4 * (# of G or C nucleotides)

• Write a program melting-temperature.py that
computes the melting temperature of a DNA
sequence given as the first argument.

> python melting-temperature.py ACGGTCA

22 degrees C

Solution #3

import sys

sequence = sys.argv[1].upper()

numAs = sequence.count('A')

numCs = sequence.count('C')

numGs = sequence.count('G')

numTs = sequence.count('T')

temp = (2 * (numAs + numTs)) + (4 * (numGs + numCs))

print temp, 'degrees C'

Challenge problem
Download the file "sonnet.txt" from the course web site. Read
the entire file contents into a string, divide it into a list of
words, sort the list of words, and print the list. Make the words
all lower case so that they sort more sensibly (by default all
upper case letters come before all lower case letters).

Tips:

To read the file as a single string use:
sonnet_text = open("sonnet.txt").read()

To sort a list of strings use:
string_list.sort()

Challenge problem solution

sonnet_text = open("sonnet.txt").read()

next line optional, just gets rid of common punctuation

sonnet_text = sonnet_text.replace(",","").replace(".","")

sonnet_text = sonnet_text.lower()

wordList = sonnet_text.split()

wordList.sort()

print wordList

Reading

• Chapters 10 and 12 of
Think Python by Downey.

