Sequence comparison: Local alignment

Genome 559: Introduction to Statistical and Computational Genomics

Prof. James H. Thomas

Review - global alignment

Fill DP matrix from upper left to lower right, trace back alignment from lower right corner.

start traceback

FYI - informal inductive proof of best alignment path

Consider the last step in the best alignment path to node α below from its adjacent nodes, where X, Y, and Z are scores of the best alignments up to those nodes. We can reach node α by three possible paths: an A-B match, a gap in sequence A or a gap in sequence B:

<u>BUT</u> the best paths to X, Y, and Z are analogously the max of their three upstream possibilities, etc. Inductively QED.

Local alignment

- A single-domain protein may be similar to only one region within a multi-domain protein.
- A DNA query may align to a small part of a genome.
- An alignment that spans the complete length of both sequences may be undesirable.

BLAST does local alignments

Typical search has a short query against long targets.

The alignments returned show only the well-aligned match region of both query and target.

Review - global alignment DP

- Align sequence x and y.
- F is the DP matrix; s is the substitution matrix; d is the linear gap penalty.

$$F(0,0) = 0$$

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) + d \\ F(i, j-1) + d \end{cases}$$

Local alignment DP

- Align sequence x and y.
- F is the DP matrix; s is the substitution matrix; d is the linear gap penalty.

$$F(0,0) = 0$$

$$F(i, j) = \max \begin{cases} F(i-1, j-1) + s(x_i, y_j) \\ F(i-1, j) + d \\ F(i, j-1) + d \\ 0 \end{cases}$$

A (very) simple example

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

$$d = -5$$

initialize the same way as for global alignment

		A	А	G
	O			
Α				
G				
С				

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

$$d = -5$$

		Α	А	G
	0			
Α	?			
G	?			
С	?			

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Τ	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0		
Α	0	?		
G	0			
С	0			

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Τ	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	Q		
А	0_	2 -5 > -5 0		
G	0			
С	0			

A A

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0		
Α	0	2		
G	0			
С	0			

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Τ	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0		
Α	0	2		
G	0	?		
С	0	?		

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0		
А	0	2		
G	0	¹ -5 -3 ≥-5 0		
С	0			

	Α	С	G	Т
Α	2	-7	- 5	-7
O	-7	2	-7	-5
G	-5	-7	2	-7
H	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0		
А	0	2		
G	0	0		
С	0	0		

(signify no preceding alignment with no arrow)

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Τ	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0	0	
Α	0	2	?	
G	0	0	?	
С	0	0	?	

(signify no preceding alignment with no arrow)

	Α	С	G	Т
Α	2	-7	- 5	-7
O	-7	2	-7	-5
G	-5	-7	2	-7
H	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0	0	
А	0	2	2	
G	0	0	0	
С	0	0	0	

	Α	С	G	Т
Α	2	-7	- 5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Τ	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0	0	0
Α	0	2	2	?
G	0	0	0	?
С	0	0	0	?

	Α	С	G	Т
Α	2	-7	- 5	-7
O	-7	2	-7	-5
G	-5	-7	2	-7
H	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0	0	0
Α	0	2	2	0
G	0	0	0	4
С	0	0	0	0

Traceback

AG AG

	Α	С	G	Т
Α	2	-7	- 5	-7
C	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

$$d = -5$$

		Α	Α	G
	0	0	0	0
Α	0	2	2	0
G	0	0	0	4
С	0	0	0	0

Start traceback at <u>highest</u>
score anywhere in matrix, follow
arrows back until you reach 0

Multiple local alignments

- Traceback from highest score, setting each DP matrix score along traceback to zero.
- Now traceback from the remaining highest score, etc.
- The alignments may or may not include the same parts of the two sequences.

Local alignment

- Two differences from global alignment:
 - If a DP score is negative, replace with 0.
 - Traceback from the <u>highest</u> score in the matrix and continue until you reach 0.
- Global alignment algorithm: Needleman-Wunsch.
- · Local alignment algorithm: *Smith-Waterman*.

(some) specific uses for alignments

- make a pairwise or multiple alignment (duh)
- test whether two sequences share a common ancestor
 (i.e. are significantly related)
- find matches to a sequence in a large database
- build a sequence tree (phylogenetic tree)
- make a genome assembly (find overlaps of sequence reads)
- repeat-mask a genome sequence (find matches to a database of known repeats)
- map sequence reads to a reference genome

Another example

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal <u>local</u> alignment of AAG and GAAGGC. Use a gap penalty of d = -5.

		Α	Α	G
	0	0	0	0
G	0	0	0	2
Α	0	2	2	0
Α	0	2	4	0
G	0	0	0	6
G	0	0	0	2
С	0	0	0	0

Traceback

		Α	Α	G
	0	0	0	0
G	0	0	0	2
Α	0	2	2	0
Α	0	2	4	0
G	0	0	0	(6)
G	0	0	0	2
С	0	0	0	0

AAG AAG

DP matrix

		A	A	G
	0	0	0	0
G	0	0	0	2
A	0	2	2	0
A	0	2	4	0
G	0	0	0	6
G	0	0	0	2
C	0	0	0	0

Traceback matrix

You don't actually need first row and column

(-10)	(-10)	(-10)	(-10)
(-10)	-10	-10	0
(-10)	0	0	-10
(-10)	0	0	-10
(-10)	-10	-10	0
(-10)	-10	-10	0
(-10)	-10	-10	-10

O = diagonal, -1 = gap left, +1 = gap top, -10 = no alignment

Problem - find the best GLOBAL alignment

	Α	С	G	Т
Α	2	-7	-5	-7
С	-7	2	-7	-5
G	-5	-7	2	-7
Т	-7	-5	-7	2

Find the optimal <u>global</u> alignment of AAG and GAAGGC. Use a gap penalty of d = -5.

		Α	Α	G
	0	- 5	-10	-15
G	-5			
Α	-10			
Α	-15			
G	-20			
G	-25			
С	-30			

(contrast with the best local alignment)