
Strings

Genome 559: Introduction to Statistical 
and Computational Genomics

Prof. James H. Thomas



Run a program by typing at a terminal (command) prompt.

Type python (enter) at the terminal prompt to enter the Python 
IDLE interpreter. Prompt changes to >>>. Ctrl-D or exit() to quit 
IDLE.

python myprog.py (enter) at the terminal prompt will run the 
program myprog.py in the present working directory.

python myprog.py arg1 arg2 (etc.) will provide command line 
arguments arg1 and arg2 (etc.) to the program. 

Each argument is a string object - access using sys.argv[0], 
sys.argv[1], etc., where the program name is the zeroth element.

Write your program with a text editor and save it in the present 
working directory before running it.

Review



Strings
• A string type object is a sequence of characters.

• In Python, string literals start and end with single or
double quotes (but they have to match).

>>> s = "foo"

>>> print s

foo

>>> s = 'Foo'

>>> print s

Foo

>>> s = "foo'

SyntaxError: EOL while scanning string literal

(EOL means end-of-line; to the Python interpreter there 
was no closing double quote before the end of line)



Defining strings
• Each string is stored in computer memory as an array 

of characters in sequential bytes.

>>> myString = "GATTACA"

myString

computer memory (7 bytes)

How many bytes are needed to store the human genome? (3 billion nucleotides)

In effect, the variable myString consists of a pointer to the position in 
memory (the address) of the 0th byte above. Every byte in your computer 
memory has a unique address. 



Accessing single characters
• Access individual characters by using indices in square brackets.

>>> myString = "GATTACA"

>>> myString[0]

'G'

>>> myString[2]

'T'

>>> myString[-1]

'A'

>>> myString[-2]

'C'

>>> myString[7]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range

Negative indices start at the 
end of the string and move left.

FYI - when you request myString[n] Python adds n to the memory 
address of the string and returns that byte from memory (fast).



Accessing substrings ("slicing")

>>> myString = "GATTACA"

>>> myString[1:3]

'AT'

>>> myString[:3]

'GAT'

>>> myString[4:]

'ACA'

>>> myString[3:5]

'TA'

>>> myString[:]

'GATTACA'

notice that the length of the 
returned string [x:y] is y - x

shorthand for 
beginning or 
end of string



Special characters

• The backslash is used to 
introduce a special character.

>>> print "He said "Wow!""

SyntaxError: invalid syntax

>>> print "He said \"Wow!\""

He said "Wow!"

>>> print "He said:\nWow!"

He said:

Wow!

Escape 
sequence

Meaning

\\ Backslash

\’ Single quote

\” Double quote

\n Newline

\t Tab

whenever Python runs into a 
backslash inside a string it interprets 

the next character specially



More string functionality
>>> len("GATTACA")

7

>>> print "GAT" + "TACA"

GATTACA

>>> print "A" * 10

AAAAAAAAAA

>>> "GAT" in "GATTACA"

True

>>> "AGT" in "GATTACA"

False

>>> temp = "GATTACA"

>>> temp2 = temp[1:4]

>>> print temp2

ATT

>>> print temp

GATTACA

←Length

←Concatenation

←Repeat

←Substring tests

← Assign a string slice to a 
variable name

(you can read this as “is GAT in GATTACA ?”)



String methods

• In Python, a method is a function that is 
defined for a particular type of object.

• The syntax is:
object.method(arguments)

or object.method() - no arguments

>>> dna = "ACGT"

>>> dna.find("T")

3 the first position where “T” appears

object (in this case 
a string object)

string 
method

method 
argument



Some of many string methods
>>> s = "GATTACA"

>>> s.find("ATT")

1

>>> s.count("T")

2

>>> s.lower()

'gattaca'

>>> s.upper()

'GATTACA'

>>> s.replace("G", "U")

'UATTACA'

>>> s.replace("C", "U")

'GATTAUA'

>>> s.replace("AT", "**")

'G**TACA'

>>> s.startswith("G")

True

>>> s.startswith("g")

False

Method with two 
arguments, comma 

separated

Method with no 
arguments



Strings are immutable
• Strings cannot be modified; instead, create a 

new string using assignment.

>>> s = "GATTACA"

>>> s[0] = "R"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: 'str' object doesn't support item assignment

>>> s = "R" + s[1:]

>>> print s

RATTACA

>>> s = s.replace("T","B")

>>> print s

RABBACA

>>> s = s.replace("ACA", "I")

>>> print s

RABBI

>>> s

'RABBI'

Try to change the zeroth 
character - illegal

print the string content

the string object (type 
shown by the quotes)



• String methods do not modify the string; 
they return a new string.

>>> seq = "ACGT"

>>> seq.replace("A", "G")

'GCGT'

>>> print seq

ACGT

>>> new_seq = seq.replace("A", "G")

>>> print new_seq

GCGT

>>> print seq

ACGT

Strings are immutable

assign the result 
from the right to a 

variable name



String summary

Basic string operations:

S = "AATTGG" # literal assignment - or use single quotes ' '

s1 + s2   # concatenate

S * 3 # repeat string

S[i] # get character at position 'i'

S[x:y] # get a substring

len(S) # get length of string

int(S) # turn a string into an integer

float(S) # turn a string into a floating point decimal number

Methods:

S.upper()

S.lower()

S.count(substring)

S.replace(old,new) 

S.find(substring)

S.startswith(substring)

S.endswith(substring)

Printing:

print var1,var2,var3  # print multiple variables

print "text",var1,"text"  # print a combination of literal text (strings) and variables

# is a special character –
everything after it is a 

comment, which the 
program will ignore – USE 

LIBERALLY!!

(also see Python quick reference guide linked from course web page)



Coding Tips:

Reduce coding errors - get in the habit of being 
aware what type of object each of your variables 
refers to.

Use informative variable names. (At the start, even 
including the type in the name is not a bad idea: 
arg1str, arg1int, mylist1, etc.)

Build your program bit by bit and check that it 
functions at each step by running it.

Ending a sentence with a preposition is something up 
with which I will not put. – Winston Churchill





Sample problem #1

• Write a program called dna2rna.py that reads a 
DNA sequence from the first command line argument 
and prints it as an RNA sequence.  Make sure it 
retains the case of the input.

> python dna2rna.py  ACTCAGT

ACUCAGU

> python dna2rna.py actcagt

acucagu

> python dna2rna.py ACTCagt

ACUCagu

Hint: first get it 
working for 

uppercase letters 
and then extend it 
to lowercase and 

mixed case.



Two solutions

import sys

# assign argument, replace characters, print

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

OR

import sys

print sys.argv[1]  (to be continued)



Two solutions

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

import sys

print sys.argv[1].replace("T", "U")  (to be continued)



Two solutions

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

import sys

print sys.argv[1].replace("T", "U").replace("t", "u")

• It is legal (but not always desirable) to chain together 
multiple methods on a single line.

• Think through what the second program does, going 
left to right, until you understand why it works.



Sample problem #2
• Write a program get-codons.py that reads the first command 

line argument as a DNA sequence and prints the first three 
codons, one per line, in uppercase letters.

> python get-codons.py TTGCAGTCG

TTG

CAG

TCG

> python get-codons.py TTGCAGTCGATCTGATC

TTG

CAG

TCG

> python get-codons.py tcgatcgactg

TCG

ATC

GAC

(slight challenge – print the codons on one line separated by spaces)



Solution #2

# program to print the first 3 codons from a DNA 

# sequence given as the first command-line argument

import sys

seq = sys.argv[1]  # get first argument

up_seq = seq.upper()  # convert to upper case  

print up_seq[0:3]  # print first 3 characters

print up_seq[3:6]  # print next 3

print up_seq[6:9]  # print next 3

These comments are simple, but when you write more complex 
programs good comments will make a huge difference in making your 
code understandable (both to you and others).



Sample problem #3

• Write a program that reads a protein sequence as a 
command line argument and prints the location of the 
first cysteine residue (C).

> python find-cysteine.py 

MNDLSGKTVIITGGARGLGAEAARQAVAAGARVVLADVLDEEGAATARELGDAARYQHLDVTI

EEDWQRVCAYAREEFGSVDGL 

70 

> python find-cysteine.py 

MNDLSGKTVIITGGARGLGAEAARQAVAAGARVVLADVLDEEGAATARELGDAARYQHLDVTI

EEDWQRVVAYAREEFGSVDGL 

-1

note: the -1 here means that no C residue was found



Solution #3

import sys

protein = sys.argv[1]

upper_protein = protein.upper()

print upper_protein.find("C")

(Always be aware of upper and lower case for sequences - it is valid to 
write them in either case. This is handled above by converting to 
uppercase so that 'C' and 'c' will both match.)



Challenge problem
• Write a program get-codons2.py that reads the first 

command- line argument as a DNA sequence and the second
argument as the frame, then prints the first three codons 
in that frame on one line separated by spaces.

> python get-codons2.py TTGCAGTCGAG 0

TTG CAG TCG

> python get-codons2.py TTGCAGTCGAG 1

TGC AGT CGA

> python get-codons2.py TTGCAGTCGAG 2

GCA GTC GAG



import sys

seq = sys.argv[1]

frame = int(sys.argv[2])

seq = seq.upper()

c1 = seq[frame:frame+3]

c2 = seq[frame+3:frame+6]

c2 = seq[frame+6:frame+9]

print c1, c2, c3

Challenge solution



Reading

• Chapters 2 and 8 of Think Python 
by Downey.





Some of the “characters” are written out, e.g. SP is the space character

The first 128 ASCII characters (of 256 = 1 byte = 8 bits = 28)


