
Introduction to Python

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

http://www.flos-freeware.ch/notepad2.html

http://www.python.org/download/releases/2.6.9/

If you have your own Win PC, install Python 2.6.9
and a syntax-highlighting text editor:

If you have your own Mac, install Python
(same site) and TextWrangler:

http://www.barebones.com/products/TextWrangler/download.html

This version of Python is installed on the lab computers,

any Python 2.6 or 2.7 release should work fine.

Why Python?

• Python is
– easy to learn

– fast enough

– object-oriented

– widely used

– fairly portable

• C and C++ are much
faster but much harder
to learn and use.

• Java is somewhat
faster but harder to
learn and use.

• Perl is harder to learn.

Getting started on the Mac

• Start a terminal session

• Type “python”

• This should start the python interpreter
(often called “IDLE”)

• Print "Hello, world!" as below

> python

Python 2.6.4 (something something)

details something something

Type "help", "copyright", "credits" or "license"

for more information.

>>> print "Hello, world!"

Hello, world!

if the prompt is
'>>>' you are in the

interpreter

to leave the interpreter,
type Ctrl-D or exit()

The interpreter
• Try printing various things (in your spare time)

– Leave off the quotation marks.

– Print numbers, letters and combinations.

– Print two things, with a comma between them.

– Enter a mathematical formula.

• Use the interpreter to test syntax, to try new
commands, etc. Don't write programs in the
interpreter.

the Python interpreter is a sandbox:
you play in it, you don't work in it

Your first program
• In your terminal, Ctrl-D out of the python interpreter.

• Type “pwd” to find your present working directory.

• Open TextWrangler.

• Create a file containing one line:

print “Hello, world!”

• Be sure that you end the line with enter.

• Save the file as “hello.py” in your present working directory.

• Back in your terminal, type “python hello.py”

> python hello.py

Hello, world!

Notice that, once you
save the file with “.py”
as the extension,
WordWrangler
automatically colors
the text according to
the syntax.

(This tells the computer "use python to run the program
hello.py". Yes, the result is somewhat anticlimactic.)

Objects and types

• An object refers to any entity in a python program.
• Every object has a type, which determines the properties of the

object.
• Python defines six main types of built-in objects:

Number 10 or 2.71828 or 1.23E-12

String “Hello, world!”

List [1, 17, 44] or [“pickle”, “apple”, “scallop”]

Tuple (4, 5) or (“homework”, “exam”)

Dictionary {“food” : “something you eat”, “lobster” : “an edible arthropod”}

File we'll talk about this one later…

• Each type of object has its own properties, which we will learn about in
the next few weeks.

• It is also possible to define your own type of object, comprised of
combinations of the six base types.

notice the different
symbols used to

define types - quote,
bracket, parenthesis,

curly brace

a list of numbers a list of strings

Literals and variables

• A variable is a name in your program for an object.

• For example, we can assign the name pi to the Number
object 3.14159, as follows:

>>> pi = 3.14159

>>> print pi

3.14159

• When we write out the object directly, it is a literal, as
opposed to when we refer to it by its variable name.
Above, 3.14159 is a literal, pi is a variable.

notice I am back in the
interpreter here, as you can

tell by the prompt >>>

Assignment operator

>>> pi = 3.14159

The '=' means assign the value 3.14159 to the variable
pi (it does NOT assert that pi equals 3.14159).

>>> pi = 3.14159

>>> print pi

3.14159

>>> pi = -7.2

>>> print pi

-7.2
you can see where

"variable" comes from:
pi can be changed

The import command
Many python functions are available via packages that must be

imported (other functions are always available - called built-in).
For example, the log function is in the math package:

>>> print log(10)

Traceback (most recent call last):

File foo, line 1, in bar

NameError: name 'log' is not defined

>>> import math

>>> print math.log(10)

2.30258509299

>>> print log(10)

Traceback (most recent call last):

File foo, line 1, in bar

print log(10)

NameError: name 'log' is not defined

foo and bar mean
something-or-

other-goes-here

for now don't worry about
the details of the error
message - just be aware that
this means there is an error
in your program.

use the log function in
the math package

import the math package

The command line

• To get information into a program, we can use the
command line.

• The command line is the text you enter after the
word “python” when you run a program.

python my-program.py 17

• The zeroth argument is the name of the program file.
• Arguments larger than zero are subsequent elements

of the command line, separated by spaces.

zeroth
argument

first
argument

Reading command line arguments

Access in your program like this:

import sys

print sys.argv[0]

print sys.argv[1]

> python my-program.py 17

my-program.py

17

zeroth
argument

first
argument

There can be any number of arguments, accessed
by sequential numbers (sys.argv[2] etc).

NB argv stands for argument vector (vector is essentially another name for a list).

the sys module

Sample problem #1

• Write a program called “print-two-args.py” that reads
the first two command line arguments after the
program name, stores their values as variables, and
then prints them to screen on the same line with a
colon between.

• Use the python interpreter for quick syntax tests if
you want.

> python print-two-args.py hello world

hello : world

Hint – to print multiple things on one line, separate them by commas:
>>> print 7, "pickles"

7 pickles

Solution #1

import sys

valA = sys.argv[1]

valB = sys.argv[2]

print valA, ":", valB

print the value of
this variable

print the literal
string

assign the first
command line argument

to the variable valA

print the value of
this variable

Alternative solution #1

import sys

print sys.argv[1], ":", sys.argv[2]

print the value of
this variable

print the literal
string

print the value of
this variable

This doesn't assign the variable names, as requested in
the problem, but it is otherwise functionally equivalent.

Sample problem #2

• Write a program called “add-two-args.py”
that reads the first two command line
arguments after the program name, stores
their values as number variables, and then
prints their sum.

> python add-two-args.py 1 2

3.0

Hint - to read an argument as a decimal number, use the syntax:
foo = float(sys.argv[1])

or for an integer number:
bar = int(sys.argv[1])

The technical name for this is "casting" -
the value starts as a string object and is
cast to a float or int object (two kinds of
Number objects in Python).

Command line arguments always start as string objects

Solution #2

import sys

arg1 = float(sys.argv[1])

arg2 = float(sys.argv[2])

print arg1 + arg2

notice that this
expression gets evaluated

first, then printed

Alternative solutions #2

import sys

arg1 = float(sys.argv[1])

arg2 = float(sys.argv[2])

argSum = arg1 + arg2

print argSum

or

import sys

print float(sys.argv[1]) + float(sys.argv[2])

Challenge problems

Write a program called “circle-area.py” that reads the
first command line argument as the radius of a circle
and prints the area of the circle.

> python circle-area.py 15.7

774.371173183

Do the same thing but read a second argument as the
unit type and include the units in your output.

> python circle-area2.py 3.721 cm

43.4979923683 square cm

Challenge solutions
import sys

radius = float(sys.argv[1])

print 3.1415 * radius * radius

(or slightly better)

import sys

import math

radius = float(sys.argv[1])

print math.pi * radius * radius

import sys

import math

radius = float(sys.argv[1])

units = sys.argv[2]

print math.pi * radius * radius, "square", units

a literal string

the math package
contains most simple
math constants and
functions that are

not built in

the math constant pi to many significant digits

Reading

• Chapter 1 of Think Python by Downey.

• Legal free PDF linked on web site.

