
Problem Set #4

Due Tuesday Feb 7, at the beginning of class. Assignments turned in more than 10 minutes after

the beginning of class will be penalized.

Starting with this homework, code with poor style will be penalized even if it produces the

correct output. Examples of poor style include ambiguous or misleading variable name choices,

redundancy or inefficiency, and lack of comments. Use comments to summarize the logic of

your program.

Remember to test your code, both on the provided and additional examples.

The first 2 questions refer to the following alignment:

Red Panda ATCCGTATA

Giant Panda ATCTGTAAA

Raccoon ATTTGCAAA

Dog CTCTGCACA

1. (10 points) Make a distance matrix of the all pairwise raw distances among these four species.

For distance use number of nt changes divided by alignment length.

2. (5 points) Compute the corrected Jukes-Cantor distance for a raw distance of 7 changes in 100

nt. (use your hand-done answer to be sure that your program in question 3 is correct)

3. (10 points) Write a program jcd.py that takes a raw distance as command line input and

returns the Jukes-Cantor corrected distance. Print an error message if the raw distance is outside

the range [0,0.75). "[" means including 0, ")" means excluding 0.75. Print an informative

message if the user forgot to provide an argument. Be sure to test your program with values at or

outside the boundaries. Hint: ln is the natural log, available as the log function in the math

module.

4. (15 points) Write a program seqdict.py that reads a file of sequences (1st argument) and

gives you rapid access to any sequence from a file, based on the name assigned to the sequence.

Assume that sequence names and sequences alternate lines and that the whole sequence is on a

single line, as below. Have the program take a sequence name (2nd argument) and print the

sequence name followed by the sequence (same format as source file) or print "sequence x not

found". Note - though you will only have the program print one sequence, it must be

implemented so that ALL the sequences are rapidly accessible within the program (i.e. don't just

read lines until you find the correct sequence name, print, and quit).

>cat seqs.txt

red_panda

ATCCGTATA

giant_panda

ATCTGTAAA

raccoon

ATTTGCAAA

dog

CTCTGCACA

>python seqdict.py seqs.txt raccoon

raccoon

ATTTGCAAA

>python seqdict.py seqs.txt bigfoot

sequence bigfoot not found

5. (15 points) Write a program distance.py that reads a command-line specified file

containing an alignment and prints a raw distance between the two sequences. For simplicity,

assume the alignment in the file is on two lines with the format below. Don't use data at positions

with a gap in one sequence (these are usually interpreted as "uninformative" sites). For distance

use number of nt changes divided by the number of informative sites. Remember to make it work

with ANY valid alignment.

>cat align.txt

ATTGCTCTGGATCT

ATTCCATCGG-TCT
>python distance.py align.txt

0.307692

6. (20 points) Write a program repeated.py that reads a command-line specified file and

prints all lines that occur multiple times in the file (in no particular order), and how many times

each repeated line occurs (separated by a tab).

>cat colors.txt

red

blue

green

orange

red

purple

green

green

>python repeated.py colors.txt

green 3

red 2

7. (25 points) Write a program kmers.py that reads a command-line specified file containing a

single sequence (DNA or protein) like chr21.txt and an integer k, and prints all k-mers that

occur at least once in the file and the number of occurrences of each k-mer (sequence of length

k), separated by a space. Print the k-mers in alphabetical order, and make sure to ignore the case

of the letters (don’t treat lowercase and uppercase letters separately). Note: chr21.txt is quite

large, so this program may take a while to run (it took ~30 seconds on my computer; if it’s taking

much longer, check if you could make your program more efficient). You may find it useful to

create some smaller test files and hand-calculate the expected outputs.

>python kmers.py chr21.txt 1

A 10422923

C 7160210

G 7174720

N 3612060

T 10348782

>python kmers.py chr21.txt 2

AA 3478029

AC 1783676

AG 2417672

AN 1

AT 2743545

CA 2558856

CC 1817796

CG 380444

CN 10

CT 2403104

GA 2080230

GC 1496587

GG 1824254

GN 4

GT 1773645

NA 5

NC 4

NG 4

NN 3612044

NT 2

TA 2305803

TC 2062146

TG 2552346

TN 1

TT 3428486

Challenge questions:

1. (challenge question) Write the same program as for question 5, but use one of the standard

formats actually used for alignments (shown below) and print the Jukes-Cantor corrected

distance. (by the way, you don't need to use the 2 and 15 values - these are useful for programs

that need to allocate memory explicitly)

2<space>15

name1

ATTGCTCTGGATCT

name2

ATTCCATCGG-TCT

(the 2<space>15 is on the first line and means expect 2 sequences and an alignment of length 15;

subsequent lines are alternating names and aligned sequence strings (the whole alignment on one

line). This is usually called the sequential phylip format after the program that first used it,

which was written by Joe Felsenstein at UW.)

2. (challenge question) Write the same program as for question 5, except make the output ALL

the pairwise distances one per line, indicating which pair by their names.

For example, the following file contents would produce 3 lines of output, one for each pair.

3<space>15

name1

ATTGCTCTGGATCT

name2

ATTCCATCGG-TCT

name3

ATGCCATCGGATCT

