
Problem Set 3 answers

Due Tuesday, January 31, at the beginning of class. Assignments turned in more than 10

minutes after the beginning of class will be penalized. The Python problems may take

you a long time - do not procrastinate. Data files to use in your programs are separately

linked on web page: chr21.txt and blastn_OUT.txt.

1. (10 points) De novo genome assembly typically starts with a huge number of

relatively short nucleotide sequences. Using methods we have talked about in

class, propose a sensible approach to determining which reads have sequence

overlaps. A few sentences will suffice – you don’t have to be very technical. (you

can assume no sequencing errors and no long repeat sequences in the source

genome)

Conceptually, de novo genome assembly involves joining overlapping reads

iteratively until it’s no longer possible (because the entire genome/chromosome

has been assembled, or upon encountering a repeat larger than any of the short

sequences). This is a similar (albeit more involved) problem to BLAST, and the

heuristic approach in BLAST is helpful here as well – using seed sequences to

prioritize the search space. We can also use a greedy algorithm, like in tree

algorithms like UPGMA, to further speed up the process. We can find the best

overlapping pair of sequences, merge those sequences, and repeat.

Python tips:

 Be sure to run your program - even experienced programmers make minor errors

 Be sure your program runs on cases other than the example shown

 Build your program step by step, printing out lots of intermediate results (or parts

of them - some of these problems work on very large files). At the end just

remove or comment out the intermediate printing steps.

 Always keep in your head what type of object to which each variable refers. If

you have trouble with this, then put the type into the variable name (e.g.

listOfStrings or myIntAsString)

 Stretch yourself by solving a more complex version of one or two of the problems

or write a program to solve some problem you've faced in your own research (not

required).

 When you get to the end, pause and reflect on how you can now do fairly

sophisticated things with large data sets.

2. (15 points) Write a program mutants.py that takes a DNA sequence and output file

name as command-line arguments and creates a file of that name containing all possible

mutant sequences produced by a single base substitution from the query sequence. Each

line should contain one mutant sequence (in any order), and the query sequence should

not be in the output file.

>python mutants.py ACTGAC mutants.txt

>cat mutants.txt

CCTGAC

TCTGAC

GCTGAC

AATGAC

ATTGAC

AGTGAC

ACAGAC

ACCGAC

ACGGAC

ACTAAC

ACTCAC

ACTTAC

ACTGCC

ACTGTC

ACTGGC

ACTGAA

ACTGAT

ACTGAG

This problem only requires for loops, if statements, and string/list operations –

dictionaries are not particularly useful. Many of you had a lot of nearly repeated code,

considering each nucleotide separately (if base == “A”, …) . While this works ok for

DNA, it would be much less ok for proteins! Remember that if you have a lot of similar

code, it means you can probably use a loop (combined with if statements) instead.

import sys

seq = sys.argv[1]

outf = open(sys.argv[2],'w')

nts = ('A', 'C', 'T', 'G')

loop through positions in seq

for i in range(len(seq)):

 # loop through all possible nucleotides

 for nt in nts:

 newseq = list(seq) # make list, which is mutable

 if (seq[i] != nt): # exclude the original sequence

 newseq[i] = nt # make mutation

 outf.write(''.join(newseq) + '\n') # print mutant

outf.close()

3. (20 points) Next-generation DNA sequencers can process several samples in parallel,

each identified by a “barcode” sequence, which are then bioinformatically split into

separate data files. Write a program filter_by_barcode.py that takes three

command-line arguments – a query barcode sequence and two files containing the same

number of DNA sequences, where the first (e.g. reads.txt) contains sequencing reads

of interest and the second (e.g. barcodes.txt) contains corresponding barcode

sequences – and prints the sequences from the reads file that have corresponding barcode

sequences that match the query. All sequencing reads and barcodes should each be the

same length. Make sure to only load one sequencing read-barcode pair at a time, to

ensure that the program can deal with extremely large files.

>cat reads.txt

AACACCAGTATCATCT

CATTAGATCGGATCTA

GAAGTCTACCCCTATC

TTAGGCCCTCTACGGT

>cat barcodes.txt

ACTGGT

CTAGAC

AGGTTT

TACCTG

>python filter_by_barcode.py AGGTTT reads.txt barcodes.txt

GAAGTCTACCCCTATC

To be able to deal with large files, it’s best to deal with one line (or pair of lines) at a

time. To read the two files simultaneously, we can simply loop through one file and read

one line of the second file inside that loop. Alternatively, you could make a list of the line

numbers of barcodes matching the query, and extract those lines from the reads file … at

the cost of storing that list of line numbers in memory.

import sys

query = sys.argv[1]

reads = open(sys.argv[2])

barcodes = open(sys.argv[3])

get lines of reads file one at a time

for read in reads:

 # for each read, get one line from the barcode file

 barcode = barcodes.readline().strip()

 # if the barcode matches the query, print the read

 if barcode == query:

 print read.strip()

4. (20 points). DNA sequencers can produce errors, even while sequencing barcodes.

However, if only a small number of barcodes are expected, barcode sequencing reads

with few errors can still be matched to the correct sample. For example, if you have two

samples with expected barcodes CTAGAC and AGGTTT, you can infer that a barcode

sequence AGGTAT should be matched to the AGGTTT sample since it is 1 substitution

(single base difference) away, compared to 5 substitutions away from CTAGAC. Modify

your program from the previous problem to include sequencing reads with barcodes that

have up to 1 substitution from the query barcode.

>python filter_by_barcode2.py AGGTAT reads.txt barcodes.txt

GAAGTCTACCCCTATC

Some of you tried to reuse code from problem 2, comparing the barcode to all sequences

1 substitution away from the query. However, it’s much simpler to compare the query to

the barcode one letter at a time, using a loop.

import sys

query = sys.argv[1]

reads = open(sys.argv[2])

barcodes = open(sys.argv[3])

for read in reads:

 barcode = barcodes.readline().strip()

 diff = 0 # number of base differences

 for i in range(len(query)): # assumes query is at least

as long as barcode

 if barcode[i] != query[i]: # compare 1 pair of bases

 diff += 1

 if diff <= 1: # only print read if within 1 substitution

 print read.strip()

5. (25 points) Write a program find_seq.py that finds all the positions of exact

matches on human chromosome 21 (chr21.txt) for a DNA sequence given as a command-

line argument and prints each position and the total number of matches. Make sure that

the search doesn't depend on the case of the query or the sequence in the file. TIPS: You

don't need to use lists to solve the problem. Remember that string1.find(string2, start)

returns the first position where string2 appears in string1 after start position in string1,

and that if string2 is not found it returns -1 (a common way of indicating not found or

failed).

>python find_seq.py GATTGATGATA
1725839

5312484
7185252

8417800

8639981

8946117

11518008

11582415

11814084

14410790

16307228

19025838

22553983

13 matches

import sys

f = open("chr21.txt")

load sequence as upper-case string

seq = ""

for line in f:

 seq += line.strip().upper()

f.close()

count = 0 # number of matches

p = seq.find(sys.argv[1]) # look for first match

while p != -1: # until there are no more matches

 print p + 1 # print 1-indexed position

 count += 1 # increment match count

 p = seq.find(sys.argv[1],p+1) # look for next match

print "%d matches" % count

6. (20 points) The file blastn_OUT.txt contains the text output from a blastn search

(slightly edited for clarity). Look at the file and notice that it gives a series of alignments,

each preceded by three lines that describe general values for the alignment (Score = etc.).

Write a program blastn_parse.py that reads a blastn text output file and lists the

alignment score and E-value (labeled Expect in the output) for each alignment, one per

line.

>python blastn_parse.py blastn_OUT.txt

Score 1742 bits, E-value 0.0

Score 48.1 bits, E-value 7e-004

Score 44.1 bits, E-value 0.011

Score 44.1 bits, E-value 0.011

Score 42.1 bits, E-value 0.045

Score 40.1 bits, E-value 0.18

Score 40.1 bits, E-value 0.18

Score 40.1 bits, E-value 0.18

Score 40.1 bits, E-value 0.18

Score 40.1 bits, E-value 0.18

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

Score 38.2 bits, E-value 0.70

import sys

f = open(sys.argv[1])

for line in f:

 line = line.strip()

 if line.startswith("Score"):

 fields = line.split()

 print fields[0], fields[2], fields[3] + ", E-value",

fields[7]

f.close()

Challenge problem 1. Assuming that you have obtained the values of mu and lambda for

the blast run in problem 6, write a program that makes the same output but adds an entry

for the pair-alignment P-value. Give mu and lambda as command-line arguments.

>python blastn_compute_parse.py blastn_OUT.txt 25.0 0.79

Score 42.1 bits, E-value 0.045, P-value foo

etc.

import sys

import math

arguments

f = open(sys.argv[1]) # blastn output file

mu = float(sys.argv[2]) # mu

lam = float(sys.argv[3]) # lambda

for line in f:

 line = line.strip()

 if line.startswith("Score"):

 fields = line.split()

 score = fields[2]

 print "Score %s bits, E-value %s, P-value %.2e" %

(score, fields[7], 1-math.exp(-math.exp(-

lam*(float(fields[2]) - mu))))

f.close()

Challenge problem 2. Write a program that fills an M x N 2-dimensional list with random

integer values between -100 and 100 and writes them to a file. The values M and N

should be command line arguments. TIP: the random module contains functions related

to random numbers - use the python docs or google to figure out how to use it. Confirm

that it produces a different matrix every time you run it.

>python rand_mat.py 3 3 result.txt

>cat result.txt

-3 12 81

-27 -5 77

19 -44 34

import sys

import random

arguments

m = int(sys.argv[1]) # rows in array

n = int(sys.argv[2]) # columns in array

outf = open(sys.argv[3],'w') # output file

generate M x N random array and store in 2D list

array = []

for i in range(m):

 row = []

 for j in range(n):

 row.append(random.randint(-100,100))

 array.append(row)

print array

for i in range(len(array)):

 # convert row from ints to strings

 strrow = []

 for j in range(len(array[i])):

 strrow.append(str(array[i][j]))

 # print row

 outf.write("\t".join(strrow) + "\n")

outf.close()

