
Problem Set #2 Answers 

 

The first three questions pertain to the following DP matrix:  

 
 

1. (5 points) Was this DP matrix generated by the Smith-Waterman or Needleman-Wunsch 

algorithm? How do you know?  

 

Needleman-Wunsch, because Smith-Waterman never has negative scores. 

 

2. (5 points) For this DP matrix, is the gap penalty linear or affine? Give the value(s).  

 

Linear, which you can easily see from the uniform steps of 2 in the top row or first column. 

Value is -2. 

 

3. (10 points) Draw an empty amino acid substitution matrix, and fill in as many values as you 

can, based on the above DP matrix.  

 

Some of you interpreted this as applying to the "standard" amino acid matrix, which is fine. 

Below I just give the characters that are actually part of the sequences. We can tell the score for 

every pair that aligns (all the diagonals), and to get the score we look for the difference between 

the score before and after the diagonal.  

  

 A C D E F G H I K 

A      7    

C      7 2  9 

D      16 9 11  

E      16  4  

F        9 6 

G 7 7 16 16      

H  2 9       

I   11 4 9     

K  9   6     



4. (10 points) Explain how blast speeds up finding sequences related to a query. 

 

The query sequence is broken into small words (usually 3 residues long for proteins), which act 

as seeds for searches. The target dataset is pre-indexed for all positions that have a high-scoring 

match to each possible word. Each high scoring match is then extended using local alignment, 

continuing until the alignment score drops below a threshold. This allows the search to be limited 

to sequences near high scoring regions, thereby speeding up the search.  

 

5. (5 points) Qualitatively describe how decreasing or increasing the blast word length would 

change the speed and false-negative rate for blast searches (for simplicity, assume alignments 

start only from exact word matches). 

 

Decreasing the word length makes the search slower because more alignments need to be tested 

and the alignment is the slow part of blast. However, it will make the search more sensitive 

(fewer false negatives) because among those extra attempted alignments might be correct ones 

that would be missed with longer word length (the target fails to have any long identical matches 

with the query, even though overall it has substantial similarity). Remember that the word 

indexing is done once BEFORE any searching, so the time to make the index is not relevant (it is 

pretty fast anyway). 

 

Some of you got this exactly reversed, though nearly everyone realized there was a tradeoff. If 

you think about the extreme cases, it might help clarify the logic. If the word size is 1 hardly 

anything will ever be missed (anything with even one aligned residue identity will be found), but 

there will be little or no speed up because alignments will be tried starting any place there is even 

a single match. If the search word is very long, very few alignments will be attempted but many 

real alignments will be missed because they don’t happen to include a long stretch of identical 

residues. 

 

Remember that the alignments themselves are not influenced by the word matching – they are 

done by standard local alignment dynamic programming. 

 

6. (10 points) Write a program copy-file.py that copies a given file. For example, if you have a 

file called seq1.txt that contains one line ("GATCCAT"), then you could create a copy of this 

file called seq2.txt as follows: 

 
import sys 

infile = open(sys.argv[1], "r") 

outfile = open(sys.argv[2], "w") 

outfile.write(infile.read()) 

infile.close() 

outfile.close()  

 

Alternatively, if you don't worry about closing the files (they get closed automatically when this 

very simple program exits):  

 
import sys 

open(sys.argv[2], "w").write(open(sys.argv[1], "r").read())  

 



This is very compact, but it is a lot harder to comprehend the code.  

  

7. (10 points) Write a program reverse-lines.py that reads in the contents of a file, and prints out 

the lines in reverse order.  

 
import sys 

infile = open(sys.argv[1], "r") 

lineList = infile.readlines() 

lineList.reverse() # works in place, elements are now in reverse order  
print "".join(lineList) 

infile.close()  

 

Alternatively, using a loop:  

 
import sys 

infile = open(sys.argv[1], "r") 

lineList = infile.readlines() 

index = len(lineList) – 1 

for foo in range(len(lineList)): # I used foo to indicate that I do not use 

the variable 

print lineList[index].strip() 

index -= 1 

 

or a little nicer using range decrement:  
 
import sys 

infile = open(sys.argv[1], "r") 

lineList = infile.readlines() 

for index in range(len(lineList), 0, -1):  

print lineList[index-1].strip()  

 

8. (10 points) Write a program split-number.py that reads a real number from the command line 

and prints its integer part on one line, followed by its decimal part (i.e., the digits after the 

decimal point) on a second line. For the decimal part, print no more than 6 digits after the 

decimal, but do not print trailing zeroes.  
 
import sys  

val = sys.argv[1]  
print "%d" % float(val)  
index = val.find(".")  
val = val[index + 1: index + 7]  
print val.rstrip("0") # lstrip and rstrip are like strip but only one end  

 

A nice way to do this with number formatting alone, which comes close to the exact answer 

(though the second output line is 0.#### rather than just ####):  
 
import sys  
val = float(sys.argv[1])  
remainder = val - int(val) # this leaves just the part right of the decimal  
print "%d" % val  
print "%.6g" % remainder  

 



9. (10 points) Write a program format-number.py that takes as input two arguments: a number 

and a format, where the format is either integer, real or scientific. Print the given number in the 

requested format, and print an error if an invalid format string is provided.  

 
import sys 

val = float(sys.argv[1]) 

format = sys.argv[2] 

if (format == "integer"):  

print "%d" % val 

elif (format == "real"):  

print "%f" % val 

elif (format == "scientific"):  

print "%e" % val  

else:  

print "Invalid format:", format  

 

 

10. (10 points) Write a program merge-lines.py that reads a file and prints the contents of the file 

all on one line (no white space, no newlines).  

 

NOTE - since I didn't specify, some of you solved this using a specific file hard-coded in the 

program, which is fine. This solution takes the file name from the command-line. I didn't detract 

for not eliminating tabs (but they are also common white-space). Many of you only eliminated 

newlines at the end of lines, which isn't enough - you need to eliminate internal spaces as well.  

 
import sys 

f = open(sys.argv[1]) 

str = f.read() 

f.close() 

str = str.replace("\n","").replace("\t","").replace(" ","") 

print str 

 

11. (15 points) Write a program read_matrix.py that opens a file like matrix.txt, stores the 

entries in a 2-dimensional list and prints the matrix out on the screen. Don't just read the lines 

and spit them back - you must store the values in a 2-dimensional list of numbers first (as if you 

were going to use them to score an alignment). The format of the file is tab-delimited text, with 

one integer value in each data field and one row of the matrix on each line. Don't worry about 

getting the output to look pretty, just have it be readable. Make sure your program works on 

ANY file with the format of matrix.txt regardless of how many rows and columns there are.  

 
import sys 

openFile = open(sys.argv[1]) 

multiplier = int(sys.argv[2]) 

matrix = [] # initialize list to store rows of input file, each a list 

for line in openFile: 

 row = line.strip().split('\t') # list of entries in row 

matrix.append(row) 

openFile.close() 

# print the matrix 

for row in matrix: 

 print '\t'.join(row) 



 

How would you change your program to print each matrix value multiplied by a command-line 

specified integer? (you don't need to write the program, just indicate the changes) 

 
import sys 

openFile = open(sys.argv[1]) 

multiplier = int(sys.argv[2]) 

matrix = [] # initialize list to store rows of input file, each a list 

for line in openFile: 

 row = [] 

 for value in line.strip().split('\t'): 

  row.append(str(int(value) * multiplier)) 

 matrix.append(row) 

openFile.close() 

for row in matrix: 

 print '\t'.join(row) 

 

 

12. Challenge problem (solution to first part). Read a sequence from a file (where the sequence 

may be on one or many lines) and randomize (shuffle) the order of residues in the sequence.  

 
import sys 

import random 

seq = open(sys.argv[1], "r").read() 

seq = seq.replace("\n", "") 

residueList = list(seq) # explode the string into a list of characters 

random.shuffle(residueList) # shuffle the order of the list 

print "".join(residueList)  

 

Note - I found the shuffle function just by typing "python shuffle" into Google. I saw that it acts 

on lists, so I converted the sequence into a list of characters first.  

 

13. Challenge problem (solution to first part). Read a file of tab-delimited text and print the Nth 

and Mth fields from each line, where N and M are command-line specified.  

 
import sys 

openFile = open(sys.argv[1], "r") 

n = int(sys.argv[2]) – 1 

m = int(sys.argv[3]) – 1 

for line in openFile: 

# strip new line and split each line on tabs 

fieldList = line.strip().split("\t") 

# test that both Nth and Mth fields exist 

if len(fieldList) > n and len(fieldList) > m:  

print fieldList[n] + "\t" + fieldList[m] 

openFile.close() 


