
Problem Set 1 Answers, GS559, Winter 2016

Note - for the programming assignments throughout my part of the
course, there are many variations that will work - as long as your code
works it is fine. Later on in the course we may start grading based on
having compact efficient code.

1) Alanine has the smallest variance in scores (this is variance in the
usual statistical sense). This suggests that during evolution, alanine
tends to be relatively readily changed to and from other amino acids,
so that these changes should be neither rewarded nor penalized very
heavily (relative to other amino acids). This make sense biochemically
as well, since alanine has perhaps the most "generic" side chain – a
single methyl group. Tryptophan has the largest variance in scores for
exactly the opposite reasons – it tends to be the most conserved
amino acid and biochemically has a very large and chemically unique
side chain.

2) Blosum62, linear gap -4 score sum 36

R L I N L M P - - - - K V L A R E Y K N Y

Q F F P L M P P A P Y K I L A K D F E N Y
+1 +0 +0 -2 +4 +5 +7 -4 -4 -4 -4 +5 +3 +4 +4 +2 +2 +3 +1 +6 +7

Blosum40, gap open -9, gap extend -1 score sum 66

R L I N L M P - - - - K V L A R E Y K N Y

Q F F P L M P P A P Y K I L A K D F E N Y
+1 +0 -1 -4 +6 +9 +12 -9 -1 -1 -1 +8 +4 +6 +7 +3 +2 +4 +1 +9 +11

You see what a pain in the neck this is to do by hand!?

3) Okay, so this is an even bigger pain in the neck to do by hand.

The optimal global alignment has score -2. The traceback arrows used
for the alignment are shown in blue and the best alignment is gap free:

TGCTG

TAATG

Programming tips:
- try out syntax in the python interpreter
- build the program step by step, printing the output at each step so
you are sure it is working correctly
- use sensible variable names

Some of the long lines below are wrapped - in the python program
these have to be on a single line or on multiple lines each ending with

a single '\' character (indicates that the next line should be read as part
of the previous line). There are many details that can be changed –
e.g. many of you assigned variable names before printing, which is
fine.

4) get-three-args1.py :

import sys

print sys.argv[1].upper()

print sys.argv[2].upper()

print sys.argv[3].upper()

5) get-three-args2.py :

import sys

print sys.argv[1].upper() + sys.argv[2].upper() + sys.argv[3].upper()

note that if you put commas between the strings instead of

concatenating you get spaces in the output

6) get-subsequence.py :

import sys

seq = sys.argv[1]

start = int(sys.argv[2]) - 1 # the -1 accounts for the fact that

python

starts at index 0

of course you could do the -1 on the last line instead

end = int(sys.argv[3])

print seq[start:end]

7) count-substrings.py :

import sys

target = sys.argv[1]

query = sys.argv[2]

n = target.count(query)

print "The sequence " + query + " appears in the sequence " + target

+ " " + str(n) + " times."

8) challenge questions (these are a lot easier with methods we hadn't
covered yet, which my answers use, but you can solve these using
only the methods we had covered)

General tip - if you want to work with a sequence that won't be
changed, you are probably best off representing it as a string object
(which is immutable). If you want to work with a mutable sequence,
you generally want to convert it to a list of characters (a list of one-
character strings).

reverse.py :

import sys

slist = list(sys.argv[1]) # get the string argument as a list so

that we can use reverse()

slist.reverse() # reverse the order of elements in the

list

s = ''.join(slist) # convert back to a string with no

separator

print s

reverse-complement1.py :

import sys

slist = list(sys.argv[1].upper())

slist.reverse()

for i in range(len(slist)):

 if (slist[i] == 'A'):

 slist[i] = 'T'

 elif (slist[i] == 'C'):

 slist[i] = 'G'

 elif (slist[i] == 'G'):

 slist[i] = 'C'

 elif (slist[i] == 'T'):

 slist[i] = 'A'

s = ''.join(slist)

print s

An alternative approach to above is to use strings directly and convert
all the 'A' to 'T', then all the 'C' to 'G' etc., but in this case you need to

use what you might call placeholders or dummy values: e.g. first
change all 'A' to '1', all 'C' to '2', etc., then convert all '1' to 'T', all '2' to
'G', etc.

reverse-complement2.py is the same except don't convert to
uppercase and add 4 additional conversions to the loop ('a' to 't' etc.)

reverse-complement3.py is the same as reverse-complement2.py
except you add at end of the loop:

 else:

 print "Input error: character " + slist[i] + " not a valid

nucleotide"

...the output is a little cleaner if you include a "flag" that tells the
program not to print the normal output if it encountered an invalid
character. Flags are often handy. Here is the final version:

import sys

slist = list(sys.argv[1])

slist.reverse()

all_valid = True # my flag for all valid characters

for i in range(len(slist)):

 if (slist[i] == 'A'):

 slist[i] = 'T'

 elif (slist[i] == 'C'):

 slist[i] = 'G'

 elif (slist[i] == 'G'):

 slist[i] = 'C'

 elif (slist[i] == 'T'):

 slist[i] = 'A'

 elif (slist[i] == 'a'):

 slist[i] = 't'

 elif (slist[i] == 'c'):

 slist[i] = 'g'

 elif (slist[i] == 'g'):

 slist[i] = 'c'

 elif (slist[i] == 't'):

 slist[i] = 'a'

 else: # if the loop reaches this point there is

an invalid character

 print "Input error: character " + slist[i] + " not a valid

nucleotide"

 all_valid = False # change the flag to False

 break # there is no need to continue the loop

if (all_valid):

 s = ''.join(slist)

 print s

You could make this even more useful to the user if you also printed
the positions of all the invalid characters.

By the way, we'll learn a much more compact way to code this when
we get to dictionaries.

