
Welcome to Workshop: Introduction to R,
Rstudio, and Data

I. Please sign in on the sign in sheet (this is so I can
follow up to get feedback).

II. If you haven’t already, download R and Rstudio,
install to your laptop.

III. Download materials you’ll need from my website
(http://faculty.washington.edu/jhrl/Teaching.html
or google Janneke HilleRisLambers at University of
Washington – go to Teaching tab, scroll down (zip
file). Or ask me for a USB stick.

http://faculty.washington.edu/jhrl/Teaching.html

Introduction to R, Rstudio, and coding
I. What / Why R?
II. Rstudio & R

A. The Source, Console, Help and Environment panes
B. Functions and Data Objects

III. Getting started
A. Data & Project Management
B. Good Coding practice

IV. Data wrangling
A. ChickenScript.R; A demo of how to read in and

examine data, merge and subset, define variables.
B. Nutnet data: explore in pairs

V. Further topics & Resources
Workshop 1 (15/03/2018)

But first, brief introductions…

Workshop 1 (15/03/2018)

Walker Endowed Professor of Natural History
University of Washington, Seattle (USA)

Research interests:
Plant Community Ecology, Global Change
Statistics / Coding: since graduate school

My Goals:
Introduction (no background required)
Not just coding / statistics (e.g. project

management, experimental design)
Collaborative: help each other
Feedback (what worked, what didn’t)

Now you!
• Please introduce yourself
• What R / statistics coding

experience do you have?
• What do you hope to get

out of these workshops?

Workshop 1 (15/03/2018)

I. What is R?

• Computer language & environment for statistical
computing & graphics. Script based (text computer
code), not GUI based (menu / point & click).

• Tools for Data Handling and manipulation

• Large collection of statistical tools (packages) for
Data Analysis; contributed by many experts

• Graphical interface for Visualizing Data & results
from statistical analyses

• Relatively simple and effective, widely used, free,
open source…

Workshop 1 (15/03/2018)

I. Why R?
• The right tool for (many of our) jobs

Excel

Ecological
Data

R statistics?

Workshop 1 (15/03/2018)

I. Why R?
• The right tool for (many of our) jobs

• Reproducible, shareable code & tools for
collaboration

Rule of thumb: every analysis you do on a dataset will
have to be redone 10–15 times before publication. Plan
accordingly.

Workshop 1 (15/03/2018)

• The right tool for (many of our) jobs

• Reproducible, shareable code & tools for
collaboration

Excel

Your
Data

• Publication quality
plots (also easily
reproducible)

Anderegg et al. in press

I. Why R?

1. Explore data via summaries, plots or classical
statistical analyses: ANOVA, LM, GLM, …

2. Advanced analyses: Bayesian inference, random
forests, spatial, mixed effects, … (via packages)

3. Publication quality figures

4. Larger projects (e.g. publication): functions,
scripts, documentation, reproducibility

5. Build your own R package and share via
github.com

8

Workshop 1 (15/03/2018)

I. Common uses of R

•R is a programming language, the learning curve can
be steep so be patient

•Like human languages, what you get out is what you
put in

•Increased productivity when fluent

•Many sources of help: online, books, labmates, etc.

9

Workshop 1 (15/03/2018)

I. Learning R…

NOTE:

•You learn to program by making mistakes

•Expect to make errors, learn from them, avoid them,
but don’t let errors frustrate you

LET’S GET STARTED!

Workshop 1 (15/03/2018)

II. Rstudio: what is it?
• Portal through which to use R (IDE).

These are instructions

Do / look / find this

> Type this (but not the >)

Instruction:

Open Rstudio

• Simultaneously write code (in a script), execute
code line by line, manage data, get help, view plots

This is something useful / important

Workshop 1 (15/03/2018)

II. Rstudio

Console pane
(where you run commands)

Environment pane
(other tabs: e.g. History)

Help pane
(other tabs: e.g. Plots)

Instruction:
• Click on the Green Plus (i.e)

• Then, click on R script

Source pane
(where scripts live)

Console pane
(where you run commands)

Environment pane
(also history)

Help pane
(also plots, packages tabs)

Workshop 1 (15/03/2018)

II. Rstudio: the four panes
• This is what you’ll usually see

Workshop 1 (15/03/2018)

II. Rstudio: the source pane

File:
also opens new file
Creates new project
Opens existing files / projects

Green plus:
Open new files (e.g.
script)

Name of script / file

Floppy disk:
save

Run: Runs (executes)
code in your script

• Scripts (your code)

Console pane
(where you run code)

Workshop 1 (15/03/2018)

II. Rstudio: the console pane

Workshop 1 (15/03/2018)

II. Rstudio: the console pane

> Command prompt
Where you type code
or ‘run’ code from
your script

Instruction

Type in your console:

> 2+2

> 5*10

> 75/3

Hit enter after each line.

What are these functions?

• Where code is executed (run or typed)

• Where code is executed (run or typed)

Workshop 1 (15/03/2018)

II. Rstudio: the console pane

Instructions

Type:

> 25/a

> log(-1)

> (3*25)/

What is going on

at each line?

Workshop 1 (15/03/2018)

Error message: check and fix

Warning message: check and
understand, perhaps fix

+ sign: R is expecting more from you

Hit ‘escape’ to escape!
Also if R is generally
bogged down…

II. Rstudio: the console pane

Help pane
(also plots, packages tabs)

Workshop 1 (15/03/2018)

II. Rstudio: …Plots/Packages/Help… pane

Workshop 1 (15/03/2018)

II. Rstudio: …Plots/Packages/Help… pane
• Use to get Help.

type here

Instruction

Type log into search bar

Option 1: type in Help pane search
bar

Workshop 1 (15/03/2018)

II. Rstudio: …Plots/Packages/Help… pane

What the function does in general terms

How to use the function

What does the function need

What does the function return

Discover other related functions

Sample code showing how it works

20

Option 2: type in Console, examine in Help pane

Workshop 1 (15/03/2018)

II. Rstudio: …Plots/Packages/Help… pane

Instruction

Type in console

> ?cor.test

Examine output in Help pane

Option 3: type in Console, examine in Help pane

Workshop 1 (15/03/2018)

II. Rstudio: …Plots/Packages/Help… pane

Instruction

Type in console

> ??”analysis of variance”

Examine in Help pane

Quotes are critical here

Environment pane
(also history)

Workshop 1 (15/03/2018)

II. Rstudio: The Environment pane

Workshop 1 (15/03/2018)

II. Rstudio: The Environment pane
• All objects you’ve identified, created show up here

Instruction

Type in console

> xx <- “Hello New Zealand”

Check your Environment pane

Workshop 1 (15/03/2018)

II. Rstudio: The Environment pane

Instructions

Type in console

> xx

> XX

What do you conclude?

• All objects you’ve identified, created show up here

Workshop 1 (15/03/2018)

II. R & Rstudio: functions and data objects

• Eventually, you may want to write your own
functions (for tasks you repeat often)

Instructions
Use help to look up these functions:

<-

read.csv

write.csv

plot

print

• A function is a chunk of code that conducts a
specific task. R comes with many built in functions
(e.g. cor.test, log, print, etc).

Workshop 1 (15/03/2018)

II. R & Rstudio: functions and data objects

• Data comes in many types (i.e. modes) recognized
by R and Rstudio. You’ll use the first three most.

Data Type Also know as: Example

Numeric float 42, 3.14, -19.2

Character string or text “a”, “block1”,”red”, “Pinus
palustris”

Logical boolean TRUE, FALSE

Integer

Complex

Raw

Workshop 1 (15/03/2018)

II. R & Rstudio: functions and data objects

Instructions
Write in your console:

> example_vector <- c(“beer”,”cheese”)

> mode(example_vector)

> example_vector

• A vector is a collection of items, that are all of the
same type (the latter is important). We can create
vectors and assign them to names using c():

• Notice example_vector has now been added to
your Environment.

• What does the c in c() refer to?

II. R & Rstudio: functions and data objects

Instructions
Write in your console:

> example_vector[1]

> example_vector[2]

• You can access the different elements within
vectors with square brackets and numbers.

Write in your console:

> example_vector[1] <- “wine”

> example_vector[3] <- “crackers”

> example_vector

• You can add to and replace elements in vectors
using the <- assignment operator:

Workshop 1 (15/03/2018)

II. R & Rstudio: functions and data objects

Instructions
Write in your console, and examine:

> rvect <- rep(1, times=10)

> svect1 <– seq(1,10)

> svect2 <- seq(1,20,by=2)

• You can also create vectors with functions called
rep and seq (stands for repeat and sequence).

Workshop 1 (15/03/2018)

Instructions
Create the following using seq and rep

(and c() as little as possible):

• Odd integers between 1 and 99

• The numbers 1,1,1,2,2,2,3,3,3

II. R & Rstudio: functions and data objects

Instructions 1
Write in your console:

> example_matrix <- matrix(svect1,nrow=5,ncol=2)

> example_matrix

• Matrices are 2-dimensional collections of data.
Like vectors, they only have 1 data type in them.

• Extract rows and columns (vectors), and cells from
matrices using square brackets [row,col]:

Instructions

Extract from example_matrix (in your

console)the 2nd column, the 5th row, and

cell that is in the 3rd row and 1st column

in 3 commands Workshop 1 (15/03/2018)

Write in your console:

> PlantDat$visits

Instructions
Write in your console:

> spp <- c("Anemone", "Avalanche Lily",

"Subarctic Lupine", "Mountain Daisy")

> flowercol <- c("white","white","purple","pink")

> visits <- c(3, 5, 25, 7)

> PlantDat <- data.frame(spp,flowercol,visits)

Workshop 1 (15/03/2018)

II. R & Rstudio: functions and data objects
• Data frames are 2-dimensional, like matrices, but

can hold several types of data. Try the following:

• As with matrices, rows / cols can be extracted with
brackets. Columns can also be extracted by name:

Workshop 1 (15/03/2018)

II. R & Rstudio: functions and data objects

Instructions
Create a vector called visitsperhour from

PlantDat.

• When you read a .txt or .csv file into R, it will be
read in as a data frame, from which you can
extract columns of data (vectors) as response and
explanatory variables. These can also be
transformed (e.g. if visits were monitored over 15
minutes and we want a per hour estimate):

> visitsperhour <- PlantDat$visits * 4

Workshop 1 (15/03/2018)

III. Organization = reproducibility (& clarity)
• Organize your files (R Projects)
• Organize your code (comments, structure)
• Presumption: you’ve organized your data (we’ll talk

about that if we have time)…

Workshop 1 (15/03/2018)

III. Getting Started: Project Management
SUGGESTIONS
• Create a directory for each project, naming it

something informative (to you).
• Keep your data files, R script(s) and output files (e.g.

figures, simulation results, summary tables)
together in that directory (potentially w/ subfolders
called data, results, etc).

• Treat data as read only, output as disposable (i.e. R
generates everything from your script and data files)

Potential Tool to do this:
create an R project

Instructions
• Go to File / New Project

• Choose New Directory / New Project

• Choose a directory / folder name (e.g.

Workshop1) to write in top box

• Choose a location for this directory

• Copy all files for this workshop there

Workshop 1 (15/03/2018)

III. Getting Started: Creating an R Project

File: Create a new project

Instructions
• Create a new script

• Save it as SimpleScript.R

• Notice that SimpleScript.R has shown up

in the R project directory you created…

• NOTE - You can close your R project

(under File / Close Project) when done,

and reopen by clicking on the R project

file (ends in .Rproj)
Workshop 1 (15/03/2018)

III. Getting Started: Starting a new script

Green plus:
Create new script

Instructions
1. Type into SimpleScript.R:

2+2

5*10

75/25

4^3

5<6

5>6

2. Save

3. Highlight the text and hit run
Workshop 1 (15/03/2018)

III. Getting Started: writing/running a script

Run to run
code in script

Instructions
1. Open ChickenScript1.R. It contains

57 lines of code.

2. Does it look easy to understand?

3. Imagine that you created this code,

and reopened it after a field

season (3 months later). Do you

think you would understand it right

away? How could you have written it

to make it easier to use? Discuss

with your neighbor.

Workshop 1 (15/03/2018)

III. Getting Started: what is ‘clean’ coding?

Text after a # (hash tag) in a
script isn’t considered
executable code by R

Instructions
Comment SimpleScript.R;

specifically:

1. Give it an informative header

(describing the script)

2. Briefly define what each line

of code is doing.

3. Run your code.
Workshop 1 (15/03/2018)

III. Getting Started: comments

Workshop 1 (15/03/2018)

III. Getting Started: Code formatting
SUGGESTIONS: Develop your own style guide; i.e.
• Create a script template, and use it for each new

script (e.g. see HRL_ScriptTemplate.R for an
example).

Workshop 1 (15/03/2018)

III. Getting Started: Code formatting
SUGGESTIONS: Develop your own style guide; i.e.
• Create a script template, and use it for each new

script (e.g. see HRL_ScriptTemplate.R for an
example).

• Comment liberally and informatively (this is useful
for sharing, especially with a future you…). Aim to
describe what and why, more than how

• Modularize your code (i.e. create chunks); use
indents and paragraph breaks to keep your code
visually appealing

• Use consistent and informative names (for data,
functions, results, etc).

Workshop 1 (15/03/2018)

III. Getting Started: Data Wrangling I
What is data wrangling?
• Reading in data, examining the data file (ensure no

errors), manipulating data to create summaries,
different explanatory variables, exploratory plots.

• You will learn this by examining existing code, and
trying to recreate similar code for another dataset…

• Chicks; 50 chicks
weighed daily for 21
days

• Fed: Soybean,
Sunflower, Linseed and
Meatmeal (ugh)

Workshop 1 (15/03/2018)

III. Getting Started: Data Wrangling I
Instructions
1. Open ChickenScript2.R, and run the

code line by line. Try to understand

what the code is doing at each step.

2. Work with a partner

3. Raise your hand if you run into any

problems.

Workshop 1 (15/03/2018)

III. Getting Started: Data Wrangling II
Nutrient Network Experiment: global, distributed, expt
• Nutrient addition of N, P, K (all combos; i.e. control, N,

P, K, NP, NK, KP, NPK)

• Exclusion of large herbivores (only control, NPK)

• Biomass, by functional
group, collected yearly

• ≥3 reps per treatment /
site (30 plots)

• You’ll be working with
data from Smith Prairie,
site in Washington State
2 nutnet files).

Workshop 1 (15/03/2018)

III. Getting Started: Data Wrangling II

Instructions
Write a script that does the following:

1. Reads in both data files & merges

2. Explore properties of the dataset

A. # years, functional groups sampled.

B. Exploratory plots: biomass vs.

time; biomass vs. functional group;

biomass vs. treatments

3. Subset data (e.g. final year, legumes

only), and re-explore (as in #2)

4. A challenge: calculate the proportion

of biomass that was legumes, explore

by treatment (use tapply, merge,

subset, create a new data frame)

Workshop 1 (15/03/2018)

IV. Further Topics
Data management
• Have a plan for data collection -> data entry -> error

checking -> ‘clean’ data

Workshop 1 (15/03/2018)

IV. Further Topics
Data management
• Have a plan for data collection -> data entry -> error

checking -> ‘clean’ data
• Include ‘metadata’; in same file (e.g. worksheet in

excel). Should include description of columns.
• Data structure: each row should be its’ own

observation, each column its’ own variable.

• No-no’s: mixing data types (numbers + letters; NA’s
an exception); gaps / spaces, long names with
spaces for column headers.

• Special consideration: consider NA’s and true zeros

• Anticipate the future (e.g. include year, 1st year)
• Order columns (explanatory, response), sort data

Workshop 1 (15/03/2018)

IV. Further Topics
Code sharing / reproducibility: Git and Github
• Git is a free online program that provides version

control. Github is the webhosting version of Git.

• Keeps track of all versions of code, allows you to
associate comments with changes, go back in time
(to a previous version), and (if coding
collaboratively) view changes by coder.

• More and more people
are sharing code (in
publications) by posting a
link to a git repository.

Workshop 1 (15/03/2018)

IV. Further Topics
Resources
• R and R studio online learning (hit home button in help)
• In-depth tutorial (web browser): Pirate-themed TryR via

Code School
• Rstudio one page cheatsheets
• Software Carpentry has great workshops (free or virtually

free), also online tutorials
• Books: I like Mick Crawley’s The R Book. Native NZ son

Hadley Wickham’s book R for Data Science is also meant to
be good – he also has a set of packages (check the
Tidyverse) that are excellent for munging, merging, data.

http://tryr.codeschool.com/
https://www.rstudio.com/resources/cheatsheets/
https://swcarpentry.github.io/r-novice-gapminder/
https://www.bookdepository.com/The-R-Book-Michael-J.-Crawley/9780470973929?redirected=true&utm_medium=Google&utm_campaign=Base1&utm_source=NZ&utm_content=The-R-Book&selectCurrency=NZD&w=AF7CAU9S51Q0ZLA80RGV&pdg=pla-309526196534:kwd-309526196534:cmp-710646238:adg-42660986568:crv-163904097987:pid-9780470973929:dev-c&gclid=Cj0KCQjwkKPVBRDtARIsAA2CG6GsSFt6oWzq84_xCC73r0cAACbOeTqXciEbVR50EK9PviRnsLr8VokaAmUCEALw_wcB
http://r4ds.had.co.nz/
https://www.tidyverse.org/

Acknowledgments

Trevor Branch
UW SAFS – R course (SAFS 552, 553)

Clay Wright
UW Biology, R course (SAFS 552, 553) & Other

Workshop 1 (15/03/2018)

