1 Appendix 1. Supplemental Methods: A detailed description of climate data and

2 statistical models compared for model fit.

3 *Climate data*

We used the following equations to relate temperature and precipitation at PRISM
grid cells to values at the Longmire climate station, based on a calculated adjustment
factor:

$$T_i = T_{station} + Ta_i \tag{A.1}$$

$$P_i = P_{station} \times Pa_i \tag{A.2}$$

9 where T_i represents mean temperature at grid cell *i*, $T_{station}$ represents mean temperature 10 recorded at the Longmire climate station and Ta_i is the adjustment factor that relates the 11 two temperature values. Likewise, P_i represents total precipitation at grid cell *i*, $P_{station}$ 12 represents total precipitation recorded at the Longmire climate station and Pa_i is the 13 factor that relates the two precipitation values. We calculated the value of Ta_i and Pa_i for 14 each month of the year using Equations A.1 and A.2, the monthly mean temperature 15 (estimated by averaging the mean maximum and mean minimum temperatures) and total 16 precipitation normals (1971-2000) for each grid cell from the PRISM estimates, and the 17 monthly mean temperature and total precipitation normals (1971-2000) calculated from 18 Longmire data. Next, we used Equations A.1 and A.2, the adjustment factors (Ta_i and 19 Pa_i), and the daily mean temperature and total precipitation values for 1914-2007 from 20 Longmire to estimate daily mean temperature and total precipitation for each grid cell in 21 the Park for 1914-2007. For days with missing data at Longmire, Longmire climate was 22 estimated based on values at a nearby climate stations and the relationship between 23 climate variables at Longmire and the nearby climate station. Longmire was missing

Supplemental

24 temperature data for only 1.39% of days and precipitation data for only 1.44% of days. 25 For each sampling location, we picked the grid cell in which the sampling 26 location was located to represent the climate of that sampling location. These climate 27 estimates were then used to calculate seasonal and annual values for temperature and 28 precipitation for each sampling location. We then input the daily temperature and 29 precipitation estimates into the SNOW-17 snow model (Anderson 1976) to calculate 30 annual snowpack variables for each sampling location. 31 Statistical models compared for fit 32 Below is a list of the 32 mixed effects models compared for fit in our analyses. 33 For all models, we designated both individual tree and year as random effects to account 34 for non-independence of data from the same individual or within years (Crawley 2007); 35 climate variables were fixed effects. Models with * between explanatory variables 36 include the interaction term. The response variable for all models was ring width index 37 (rwi), a measure of annual tree growth. There were nine potential explanatory variables: 38 mean growing season temperature (GST), growing degree days (GDD), mean dormant 39 season temperature (DST), mean annual temperature (MAT), total growing season 40 precipitation (GPT), total annual precipitation (PPT), total dormant season precipitation 41 (DPT), snow water equivalent (SWE), and snow duration (SNDR). 42 Null Model: rwi ~ 1 (intercept only) 43 Model 1: rwi ~ MAT 44 Model 2: rwi ~ PPT

- 45 Model 3: rwi ~ MAT + PPT
- 46 Model 4: rwi ~ MAT * PPT

Supplemental

- 47 Model 5: rwi ~ GST
- 48 Model 6: rwi ~ DST
- 49 Model 7: rwi ~ GPT
- 50 Model 8: rwi ~ DPT
- 51 Model 9: $rwi \sim GST + DST$
- 52 Model 10: $rwi \sim GPT + DPT$
- 53 Model 11: rwi \sim GST + DST + GPT + DPT
- 54 Model 12: rwi ~ GST + GPT
- 55 Model 13: rwi ~ GST * GPT
- 56 Model 14: rwi ~ DST + DPT
- 57 Model 15: rwi ~ DST * DPT
- 58 Model 16: rwi ~ SWE
- 59 Model 17: rwi ~ SNDR
- 60 Model 18: rwi ~ GDD
- 61 Model 19: $rwi \sim SWE + GST$
- 62 Model 20: rwi ~ SNDR + GST
- 63 Model 21: rwi ~ SWE + GPT
- 64 Model 22: rwi ~ SNDR + GPT
- 65 Model 23: rwi ~ SWE + GST * GPT
- $66 \qquad Model 24: rwi \sim SWE + GST + GPT$
- 67 Model 25: rwi ~ SNDR + GST * GPT
- 68 Model 26: $rwi \sim SNDR + GST + GPT$
- 69 Model 27: $rwi \sim GDD + DST + GPT + DPT$

- 70 Model 28: rwi ~ GDD + GPT + DPT
- 71 Model 29: rwi ~ GDD + GPT
- 72 Model 30: rwi ~ GDD * GPT
- 73 Model 31: rwi ~ GDD + SWE
- 74
- 75 LITERATURE CITED
- 76 Anderson, E.A. 1976. A point energy and mass balance model of a snow cover. NOAA
- 77 Technical Report NWS 19. U.S. Department of Commerce, Silver Spring, MD.
- 78

79 Appendix 2. Supplemental figures showing relationships between climate variables.

80 Supplemental Figure Legends

81 Figure 1S. Climate variables are highly correlated among stations near sampling

82 locations at Mt. Rainier. We used climate estimates derived from Longmire (842 m) for

83 our analyses because this station had the longest climate records. Location-specific

84 adjustments were based on elevational differences between the sampling location and

85 Longmire (i.e. temperature and precipitation lapse rates). Here we show correlations

86 between temperature (A&B) and precipitation (C&D) from Longmire as compared to a

87 climate station above (Paradise, 1654 m) and below (La Grande, 243 m) our sampling

88 locations. Correlations are similarly high when comparing mean annual temperature

89 (MAT) and cumulative precipitation (PPT) among the three climate stations. Correlations

90 are based on data from all available years for which there was overlap (Longmire: 1909-

91 2009; La Grande: 1954-1983; Paradise: 1931-2009).

92 Figure 2S. Some temperature-related climate variables are highly correlated with

93 one another within years. All pairwise relationships between mean annual temperature

94 (MAT), growing season temperature (GST), dormant season temperature (DST),

95 potential evapotranspiration (PET) and growing degree days (GDD) from the Longmire

96 climate station. Correlations between climate variables are similar for other location-

97 specific climate data. Correlation coefficients are shown in the upper panel (** indicates

98 P < 0.001; * indicates 0.001 < P < 0.05). We did not simultaneously include highly

99 correlated explanatory variables in linear mixed effects models (r>0.6).

100 Figure 3S. Some precipitation-related climate variables are highly correlated with

101 one another within years. All pairwise relationships between cumulative annual

Supplemental

- 102 precipitation (PPT), growing season precipitation (GSP), dormant season precipitation
- 103 (DSP), maximum snow pack measured as snow water equivalent (SWE) and the number
- 104 of days with snow cover (SNDR) from the Longmire climate station. Correlation
- 105 coefficients are shown in the upper panel (** indicates P < 0.001; * indicates 0.001 <
- 106 P < 0.05). We did not simultaneously include highly correlated explanatory variables in
- 107 the same linear mixed effects models (r>0.6).
- 108

109 **Figure 1S.**

111 **Figure 2S.**

114 **Figure 3S.**

