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Sample Size Calculations for Randomized Controlled Trials

Janet Wittes

INTRODUCTION

Most informed consent documents for randomized con-
trolled trials implicitly or explicitly promise the prospective
participant that the trial has a reasonable chance of answer-
ing a medically important question. The medical literature,
however, is replete with descriptions of trials that provided
equivocal answers to the questions they addressed. Papers
describing the results of such studies may clearly imply that the
trial required a much larger sample size to adequately address
the questions it posed. Hidden in file drawers, undoubtedly, are
data from other trials whose results never saw the light of
day—some, perhaps, victims of inadequate sample size. Al-
though many inadequate-sized studies are performed in a sin-
gle institution with patients who happen to be available, some
are multicenter trials designed with overly optimistic assump-
tions about the effectiveness of therapy, too high an estimate of
the event rate in the control group, or unrealistic assumptions
about follow-up and compliance.

In this review, I discuss statistical considerations in the
choice of sample size and statistical power for randomized
controlled trials. Underlying the discussion is the view that
investigators should hesitate before embarking on a trial that
is unlikely to detect a biologically reasonable effect of
therapy. Such studies waste both time and resources.

The number of participants in a randomized controlled
trial can vary over several orders of magnitude. Rather than
choose an arbitrary sample size, an investigator should
allow both the variability of response to therapy and the
assumed degree of effectiveness of therapy to drive the
number of people to be studied in order to answer a scien-
tific question. The more variable the response, the larger the
sample size necessary to assess whether an observed effect
of therapy represents a true effect of treatment or simply
reflects random variation. On the other hand, the more
effective or harmful the therapy, the smaller the trial re-
quired to detect that benefit or harm. As is often pointed out,
only a few observations sufficed to demonstrate the dra-
matic benefit of penicillin; however, few therapies provide
such unequivocal evidence of cure, so study of a typical
medical intervention requires a large sample size. Lack of
resources often constrains sample size. When they are lim-
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ited by a restricted budget or a small patient pool, investi-
gators should calculate the power of the trial to detect
various outcomes of interest given the feasible sample size.
A trial with very low statistical power may not be worth
pursuing.

Typical first trials of a new drug include only a handful of
people. Trials that study the response of a continuous vari-
able to an effective therapy—for example, blood pressure
change in response to administration of an antihypertensive
agent—may include several tens of people. Controlled trials
of diseases with high event rates—for example, trials of
therapeutic agents for cancer—may study several hundred
patients. Trials of prevention of complications of disease in
slowly progressing diseases such as diabetes mellitus may
enroll a few thousand people. Trials comparing agents of
similar effectiveness—for instance, different thrombolytic
interventions after a heart attack—may include tens of thou-
sands of patients. The poliomyelitis vaccine trial included
approximately a half-million participants (1).

This review begins with some general ideas about ap-
proaches to calculation of sample size for controlled trials.
It then presents a generic formula for sample size that can be
specialized to continuous, binary, and time-to-failure vari-
ables. The discussion assumes a randomized trial comparing
two groups but indicates approaches to more than two
groups. An example from a hypothetical controlled trial that
tests the effect of a therapy on levels of high density
lipoprotein (HDL) cholesterol is used to illustrate each case.

Having introduced a basic formula for sample size, the
review discusses each element of the formula in relation to
its applicability to controlled trials and then points to special
complexities faced by many controlled trials—how the use
of multiple primary endpoints, multiple treatment arms, and
sequential monitoring affects the type I error rate and hence
how these considerations should influence the choice of
sample size; how staggered entry and lag time to effect of
therapy affect statistical power in studies with binary or
time-to-failure endpoints; how noncompliance with pre-
scribed therapy attenuates the difference between treated
groups and control groups; and how to adjust sample size
during the course of the trial to maintain desired power. The
review discusses the consequences to sample size calcula-
tion of projected rates of loss to follow-up and competing
risks. It suggests strategies for determining reasonable val-
ues to assume for the different parameters in the formulas.
Finally, the review addresses three special types of studies:
equivalence trials, multiarm trials, and factorial designs.

Calculation of sample size is fraught with imprecision,
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for investigators rarely have good estimates of the basic
parameters necessary for the calculation. Unfortunately, the
required size is often very sensitive to those unknown
parameters. In planning a trial, the investigator should view
the calculated sample size as an approximation to the nec-
essary size. False precision in the choice of sample size adds
no value to the design of a study.

The investigator faces the choice of sample size as one of
the first practical problems in designing an actual controlled
trial. Similarly, in assessing the results of a published con-
trolled trial, the critical reader looks to the sample size to
help him or her interpret the relevance of the results. Other
things being equal, most people trust results from a large
study more readily than those from a small one. Note that in
trials with binary (yes/no) outcomes or trials that study time
to some event, the word “small” refers not to the number of
patients studied but rather to the number of events observed.
A trial of 2,000 women on placebo and 2,000 on a new
therapy who are being followed for 1 year to study the new
drug’s effect in preventing hospitalization for hip fracture
among women aged =65 years is “small” in the parlance of
controlled trials, because, as data from the National Center
for Health Statistics suggest, only about 20 events are ex-
pected to occur in the control group. The approximately 99
percent of the sample who do not experience hip fracture
provide essentially no information about the effect of the
therapy.

The observation that large studies produce more widely
applicable results than do small studies is neither particu-
larly new nor startling. The participants in a small study
may not be typical of the patients to whom the results are to
apply. They may come from a single clinic or clinical
practice, a narrow age range, or a specific socioeconomic
stratum. Even if the participants represent a truly random
sample from some population, the results derived from a
small study are subject to the play of chance, which may
have dealt a set of unusual results. Conclusions made from
a large study are more likely to reflect the true effect of
treatment. The operational question faced in designing con-
trolled trials is determining whether the sample size is
sufficiently large to allow an inference that is applicable in
clinical practice.

The sample size in a controlled trial cannot be arbitrarily
large. The total number of patients potentially available, the
budget, and the amount of time available all limit the number
of patients that can be included in a trial. The sample size of
a trial must be large enough to allow a reasonable chance of
answering the question posed but not so large that continu-
ing randomization past the point of near-certainty will lead
to ethical discomfort. A data monitoring board charged with
ensuring the safety of participants might well request early
stopping of a trial if a study were showing a very strong
benefit of treatment. Similarly, a data monitoring board is
unlikely to allow a study that is showing harm to partici-
pants to continue long enough to obtain a precise estimate of
the extent of that harm. Some boards request early stopping
when it is determined that the trial is unlikely to show a
difference between treatments.

The literature contains some general reviews and discus-

sions of sample size calculations, with particular reference
to controlled trials (2—8).

GENERAL CONSIDERATIONS

Calculation of sample size requires precise specification
of the primary hypothesis of the study and the method of
analysis. In classical statistical terms, one selects a null
hypothesis along with its associated type I error rate, an
alternative hypothesis along with its associated statistical
power, and the test statistic one intends to use to distinguish
between the two hypotheses. Sample size calculation be-
comes an exercise in determining the number of participants
required to achieve simultaneously the desired type I error
rate and the desired power. For test statistics with well-
known distributional properties, one may use a standard
formula for sample size. Controlled trials often involve
deviations from assumptions such that the test statistic has
more complicated behavior than a simple formula allows.
Loss to follow-up, incomplete compliance with therapy,
heterogeneity of the patient population, or variability in
concomitant treatment among centers of a multicenter trial
may require modifications of standard formulas. Many pa-
pers in the statistical literature deal with the consequences to
sample size of these common deviations. In some situations,
however, the anticipated complexities of a given trial may
render all available formulas inadequate. In such cases, the
investigator can simulate the trial using an adequate number
of randomly generated outcomes and select the sample size
on the basis of those computer simulations.

Complicated studies often benefit from a three-step strat-
egy in calculating sample size. First, one may use a simple
formula to approximate the necessary size over a range of
parameters of interest under a set of ideal assumptions (e.g.,
no loss to follow-up, full compliance, homogeneity of treat-
ment effect). This calculation allows a rough projection of
the resources necessary. Having established the feasibility
of the trial and having further discussed the likely deviations
from assumptions, one may then use more refined calcula-
tions. Finally, a trial that includes highly specialized fea-
tures may benefit from simulation for selection of a more
appropriate size.

Consider, for example, a trial comparing a new treatment
with standard care in heart-failure patients. The trial uses
two co-primary endpoints, total mortality and hospitaliza-
tion for heart failure, with the type I error rate set at 0.04 for
total mortality and 0.01 for hospitalization. In other words,
the trial will declare the new treatment successful if it
reduces either mortality (p < 0.04) or hospitalization (p <
0.01). This partitioning of the type I error rate preserves the
overall error rate at less than 0.05. As a natural first step in
calculating sample size, one would use a standard formula
for time to failure and select as the candidate sample size the
larger of the sizes required to achieve the desired power—
for example, 80 percent—for each of the two endpoints.
Suppose that sample size is 1,500 per group for hospital-
ization and 2,500 for mortality. Having established the
feasibility of a study of this magnitude, one may then
explore the effect of such complications as loss to follow-
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up, intolerance to medication, or staggered entry. Suppose
that these new calculations raise the sample size to 3,500.
One may want to proceed further to account for the fact that
the study has two primary endpoints. To achieve 80 percent
power overall, one needs less than 80 percent power for
each endpoint; the exact power required depends on the
nature of the correlation between the two. In such a situa-
tion, one may construct a model and derive the sample size
analytically, or, if the calculation is intractable, one may
simulate the trial and select a sample size that yields at least
80 percent power over a range of reasonable assumptions
regarding the relation between the two endpoints.

In brief, the steps for calculating sample size mirror the
steps required for designing a trial.

1. Specify the null and alternative hypotheses, along with
the type I error rate and the power.

2. Define the population under study.

3. Gather information relevant to the parameters of in-
terest.

4. If the study is measuring time to failure, model the
process of recruitment and choose the length of the
follow-up period.

5. Consider ranges of such parameters as rates or events,
loss to follow-up, competing risks, and noncompli-
ance.

6. Calculate sample size over a range of reasonable pa-

rameters.

Select the sample size to use.

Plot power curves as the parameters range over rea-

sonable values.

Sl

Some of these steps will be iterative. For example, one
may alter the pattern of planned recruitment or extend the
follow-up time to reduce the necessary sample size; one
might change the entry criteria to increase event rates; or
one might select clinical centers with a history of excellent
retention to minimize loss to follow-up.

A BASIC FORMULA FOR SAMPLE SIZE

The statistical literature contains formulas for determin-
ing sample size in many specialized situations. In this sec-
tion, I describe in detail a simple generic formula that
provides a first approximation of sample size and that forms
the basis of variations appropriate to specialized situations.

To understand these principles, consider a trial that aims
to compare two treatments with respect to a parameter of
interest. For simplicity, suppose that half of the participants
will be randomized to treatment and the other half to a
control group. The trial investigators may be aiming to
compare mean values, proportions, odds ratios, hazard ra-
tios, or some other statistic. Suppose that with proper math-
ematical transformation, the difference between the param-
eters in the treatment and control groups has an
approximately normal distribution. These conditions allow
construction of a generic formula for the required sample
size. Typically, in comparing means or proportions, the
difference between the sample statistics has an approxi-
mately normal distribution. In comparing odds ratios or
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hazard ratios, the logarithm of the differences has this
property.

Consider three different trials using a new drug called
“HDL-Plus” to raise HDL cholesterol levels in a study
group of people without evidence of coronary heart disease
whose baseline level of HDL cholesterol is below 40 mg/dI.
The Veterans Affairs High-Density Lipoprotein Cholesterol
Intervention Trial showed that gemfibrozil raised HDL cho-
lesterol levels and decreased the risk of coronary events in
patients with prior evidence of cardiovascular disease and
low HDL cholesterol levels (9). The first hypothetical study,
to be called the HDL Cholesterol Raising Trial, tests
whether HDL-Plus in fact raises HDL cholesterol levels.
The trial, which randomizes patients to receipt of HDL-Plus
or placebo, measures HDL cholesterol levels at the end of
the third month of therapy. The outcome is the continuous
variable “concentration of HDL cholesterol in plasma.”

The second study, to be called the Low HDL Cholesterol
Prevention Trial, compares the proportions of people in the
treated and control groups with HDL cholesterol levels
above 45 mg/dl at the end of 1 year of treatment with
HDL-Plus or placebo.

The third study, called the Myocardial Infarction Preven-
tion Trial, follows patients for at least 5 years and compares
times to fatal or nonfatal myocardial infarction in the two
groups. This type of outcome is a time-to-failure variable.

The formulas for determining sample size use several
statistical concepts. Throughout this paper, Greek letters
denote a true or hypothesized value, while italic Roman
letters denote observations.

The null hypothesis H, is the hypothesis positing the
equivalence of the two interventions. The logical purpose of
the trial is to disprove this null hypothesis. The HDL Cho-
lesterol Raising Trial tests the null hypothesis that 3 months
after beginning therapy with HDL-Plus, the average HDL
cholesterol level in the treated group is the same as the
average level in the placebo group. The Low HDL Choles-
terol Prevention Trial tests the null hypothesis that the
proportion of people with an HDL cholesterol level above
45 mg/dl at the end of 1 year is the same for the HDL-Plus
and placebo groups. The Myocardial Infarction Prevention
Trial tests the null hypothesis that the expected time to heart
attack is the same in the HDL-Plus and placebo groups.

If the two treatments have identical effects (that is, if the
null hypothesis is true), the group assigned to receipt of
treatment is expected to respond in the same way as persons
assigned to the control group. In any particular trial, how-
ever, random variation will cause the two groups to show
different average responses. The type I error rate, a, is
defined as the probability that the trial will declare two
equally effective treatments “significantly” different from
each other. Conventionally, controlled trials set « at 0.05, or
1 in 20. While many people express comfort with a level of
a = 0.05 as “proof” of the effectiveness of therapy, bear in
mind that many common events occur with smaller proba-
bilities. One experiences events that occur with a probability
of 1 in 20 approximately twice as often as one rolls a 12 on
a pair of dice (1 in 36). If you were given a pair of dice,
tossed them, and rolled a pair of sixes, you would be mildly
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surprised, but you would not think that the dice were loaded.
A few more pairs of sixes on successive rolls of the dice
would convince you that something nonrandom was hap-
pening. Similarly, a controlled trial with a p value of 0.05
should not convince you that the tested therapy truly works,
but it does provide positive evidence of efficacy. Several
independent replications of the results, on the other hand,
should be quite convincing.

The hypothesis that the two treatment groups differ by
some specified amount A, is called the alternative hypoth-
esis, Hy.

The test statistic, a number computed from the data, is the
formal basis for the comparison of treatment groups. In
comparing the mean values of two continuous variables
when the observations are independently and identically
distributed and the variance is known, the usual test statistic
is the standardized difference between the means,

_E 1
Z_O'V%’ ()

where x and y are the observed means of the treated group
and the control group, respectively, o is the true standard
deviation of the outcome in the population, and #n is the
number of observations in each group. This test statistic has
a standard normal distribution with mean 0 and variance 1.

In a one-tailed test, the alternative hypothesis has a di-
rection (i.e., treatment is better than control status). The
observations lead to the conclusion either that the data show
no evidence of difference between the treatments or that
treatment is better. In this formulation, a study that shows a
higher response rate in the control group than in the treat-
ment group provides evidence favoring the null hypothesis.
Most randomized controlled trials are designed for two-
tailed tests; if one-tailed testing is being used, the type I
error rate is set at 0.025.

The critical value &, is the value from a standard
normal distribution that the test statistic must exceed in
order to show a statistically significant result. The subscript
means that the statistic must exceed the | — a/2’nd percen-
tile of the distribution. In one-tailed tests, the critical value
is gl—a'

The difference between treatments represents the mea-
sures of efficacy. Statistical testing refers to three types of
differences. The true mean difference A is unknown. The
mean difference under the alternative hypothesis is A,. The
importance of A, lies in its centrality to the calculation of
sample size. The observed difference at the end of the study is
d. Suppose that, on average, patients assigned to the control
group have a true response of magnitude w; then the hy-
pothesized treated group has the response w + A,. For
situations in which the important statistic is the ratio rather
than the difference in the response, one may consider in-
stead the logarithm of the ratio, which is the difference of
the logarithms.

The type Il error rate, or [3, is the probability of failing to
reject the null hypothesis when the difference between
responses in the two groups is A,. Typical well-designed
randomized controlled trials set 8 at 0.10 or 0.20.

Related to B is the statistical power y(A), the probability
of declaring the two treatments different when the true
difference is exactly A. A well-designed controlled trial has
high power (usually at least 80 percent) to detect an impor-
tant effect of treatment. At the hypothesized difference
between treatments, the power y(A,) is 1 — B. Setting
power at 50 percent produces a sample size that yields a
barely significant difference at the hypothesized A,. One
can look at the alternative that corresponds to 50 percent
power as the point at which one would say, “T would kick
myself if I didn’t declare this difference statistically signif-
icant.”

Under the above conditions, a generic formula for the
total number of persons needed in each group to achieve the
stated type I and type II error rates is

n= 20'2{[51—04/2 + fl—ﬁ]/AA}2~ (2)

The formula assumes one treatment group and one con-
trol group of equal size and two-tailed hypothesis testing. If
the power is 50 percent, the formula reduces to n =
2(0&,_on/Ay)?, because & 5, = 0. Some people, in using
sample size formulae, mistakenly interpret the “2” as mean-
ing “two groups” and hence incorrectly use half the sample
size necessary.

The derivation of formula 2, and hence the variations in
it necessary when the assumptions fail, depends on two
relations, one related to a and one to (3.

Under the null hypothesis, the choice of type I error rate
requires the probability that the absolute value of the sta-
tistic z is greater than the critical value & _ ., to be no
greater than «; that is,

Pr{|Z| > él*a/2|H()} < a. 3)

The notation “|H,,” means “under the null hypothesis.”
Similarly, the choice of the type II error rate restricts the
distribution of z under the alternative hypothesis:

Pr{|z| > él—a/2|HA} >1-8. 4)

Under the alternative hypothesis, the expected value of x —
y is A,, so formula 4 implies

In|x — 3
Pr{\ | )”

> &ian HA} >1-B,

or
Pr{|)_c - )_’l -4, > \/% & ap— AAlHA} >1-B.
Dividing both sides by o'V 2/n,

{\/Zﬁ(b_c - )_’| — 4
Pr{y——m———

Jnl,

> fl—a/z -

HA}> 1-8,

yields a normally distributed statistic. The definition of 3
and the symmetry of the normal distribution imply

Elman — \/;AA/( \EO') =& = —&i-p &)

Rearranging terms and squaring both sides of the equations
produces formula 2.
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In some controlled trials, more participants are random-
ized to the treated group than to the control group. This
imbalance may encourage people to participate in a trial
because their chance of being randomized to the treated
group is greater than one half. If the sample size n, in the
treated group is to be k times the size n,. in the control group,
the sample size for the study will be

[€i—an t+ 51—3]2.
T A2 snh

n.= (1 + k)o? A

=kn.. (2A)
Thus, the relative sample size required to maintain the
power and type I error rate of a trial with two equal groups
is (2 + k + 1/k)/4. For example, a trial that randomizes two
treated participants to every control requires a sample size
larger by a factor of 4.5/4 or 12.5 percent in order to
maintain the same power as a trial with 1:1 randomization.
A 3:1 randomization requires an increase in sample size of
33 percent. Studies investigating a new therapy in very short
supply—a new device, for example—may actually random-
ize more participants to the control group than to the treated
group. In that case, one selects n, to be the number of
devices available, sets the allocation ratio of treated to
control as 1:k, and then solves for the value of k that gives
adequate power. The power is limited by n, because even
arbitrarily large k’s cannot make (1 + 1/k) less than 1.
The derivation of the formula for sample size required a
number of assumptions: the normality of the test statistic
under both the null hypothesis and the alternative hypothe-
sis, a known variance, equal variances in the two groups,
equal sample sizes in the groups, and independence of the
individual observations. One can modify formula 2 to pro-
duce a generic sample size formula that allows relaxation of
these assumptions. Let n{_,,, and n_ represent the rele-
vant percentiles of the distribution of the not-necessarily-
normally-distributed test statistic, and let o,,> and o, de-
note the variance under the null and alternative hypotheses,
respectively. Then one may generalize formula 2 to produce

[n?—a/z \/EO-O + 77?730'/4]2
- X : (©)

Formula 6 assumes groups of equal size. To apply to the
case where the allocation ratio of treated to control is k:1
rather than 1:1, the sample sizes in the control and treated
groups will be (1 + 1/k) and (k + 1) times the sample size
in formula 6, respectively.

The next three sections, which present sample sizes for
normally distributed outcome variables, binomial outcomes,
and time-to-failure studies, show modifications of formulas
5 and 6 needed to deal with specific situations.

CONTINUOUS VARIABLES: TESTING THE
DIFFERENCE BETWEEN MEAN RESPONSES

To calculate the sample size needed to test the difference
between two mean values, one makes several assumptions.

1. The responses of participants are independent of each
other. The formula does not apply to studies that
randomize in groups—for example, those that assign
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treatment by classroom, village, or clinic—or to stud-
ies that match patients or parts of the body and ran-
domize pairwise. For randomization in groups (i.e.,
cluster randomization), see Donner and Klar (10).
Analysis of studies with pairwise randomization fo-
cuses on the difference between the results in the two
members of the pair.

2. The variance of the response is the same in both the
treated group and the control group.

3. The sample size is large enough that the observed
difference in means is approximately normally distrib-
uted. In practice, for reasonably symmetric distribu-
tions, a sample size of about 30 in each treatment arm
is sufficient to apply normal theory. The Central Limit
Theorem legitimizes the use of the standard normal
distribution. For a discussion of its appropriateness in
a specific application, consult any standard textbook
on statistics.

4. In practice, the variance will not be known. Therefore,
the test statistic under the null hypothesis replaces o
with s, the sample standard deviation. The resulting
statistic has a ¢ distribution with 2n — 2 df. Under the
alternative hypothesis, the statistic has a noncentral ¢
distribution with noncentrality parameter V2n A,
and, again, 2n — 2 df. Standard software packages for
sample size calculations employ the 7 and noncentral ¢
distributions (11-13). Except for small sample sizes,
the difference between the normal distribution and the
t distribution is quite small, so the normal approxima-
tion yields adequately close sample sizes in most
situations.

BINARY VARIABLES: TESTING DIFFERENCE BETWEEN
TWO PROPORTIONS

Calculation of the sample size needed to test the differ-
ence between two binary variables requires several assump-
tions.

1. The responses of participants are independent.

2. The probability of an event is 7. and m, for each
person in the control group and treated group, respec-
tively. Because the sample sizes in the two groups are
equal, the average event rate is m = (. + r,)/2. This
assumption of constancy of proportions is unlikely to
be strictly valid in practice, especially in large studies.
If the proportions vary considerably in recognized
ways, one may refine the sample size calculations to
reflect that heterogeneity. Often, however, one hy-
pothesizes average values for 7, and 7, and calculates
sample size as if those proportions applied to each
individual in the study.

Under these assumptions, the binary outcome variable has a
binomial distribution, and the following simple formula
provides the sample size for each of the two groups:

(&-an + 51—5)2

n=2m(l— ) (m. =)

(TA)

This simple formula, a direct application of formula 5, uses
the same variance under both the null hypothesis and the



44 \ittes

alternative hypothesis. Because the variances differ, a more
accurate formula, derived from formula 6, is

[&1-an \/27—7(1 — )+ fl—ﬁ\/‘/ﬂc(l — )+ m(l — 77:)]2
n= .

(Trc - WZ)Z
(7B)

If one will employ a correction for continuity in the final
analysis, or if one will be using Fisher’s exact test, one
should replace n with (14)

2
. 1+ 41+ 4) (70)
" 4 I’l"ﬂc - m\ ’

All three of the above formulas use the normal distribution,
which is the limiting distribution of the binomial. They
become inaccurate as n,. and n, become very small (e.g.,
less than 5).

My personal preference among these three formulae is
formula 7C, because I believe that one should use corrected
chi-squared tests or Fisher’s exact test; however, not all
statisticians agree with that view.

TIME-TO-FAILURE DATA WITH TREATMENTS THAT
WILL BE COMPARED USING THE LOG-RANK TEST

Consider a trial that compares time to some specified
event—for example, death in chronic lung disease, recur-
rence of tumor in a cancer study, or loss of 30 percent of
baseline isometric strength in a study of degenerative nerve
disease. Let 7. and m, be the probability that a person in the
control group and a person in the treated group, respec-
tively, experiences an event during the trial. Define 6 =
In(1 — m_)/In(1 — ), which is the hazard ratio, also called
the relative risk.

Assume that the event rate is such that within each of the
two groups every participant in a given treatment group has
approximately the same probability of experiencing an
event. Assume that no participant withdraws from the study.

In a study in which half of the participants will receive
experimental treatment and half will be controls, Freedman
(15) presents the following simple formulas.

Total number of events in both treatment groups:

6+ 1\ ,
0—1 Ean T &p)°. (8A)
Sample size in each treatment group:
1 0+ 1)\ s
(7T + 77) 6 _ 1 (glfaIZ + glfﬁ) . (SB)
c 2

An even simpler formula (formula 9) is due to Bernstein
and Lagakos (16), who derived it under the assumption that
the time to failure has an exponential distribution, and
to Schoenfeld (17), who derived it for the log-rank test
without assuming an exponential model. Under their mod-

els, the total number of events required in the two treatment

groups is

(fl—a/z + 51—3)2
[In(6)]

Then the total sample size required in each treatment group
is

4 9A)

4 (& -an + 51—5)2
(m.+m)  [In(6)F

If the ratio of allocation to treatment and control is m:1
rather than 1:1, the “4” in formula 9A becomes (m + 1)*/m.

Neither formula 8 nor formula 9 explicitly incorporates
time. In fact, time appears only in the calculation of the
probabilities 7. and , of events. Below I describe how
important and complicated time can be in the calculation of
sample size for controlled trials that measure time to an
event.

(9B)

EXAMPLE

To apply the formulas given in the above sections to the
three HDL cholesterol trials, one could make the following
assumptions.

1. The standard deviation o of HDL cholesterol in the
population is approximately 11 mg/dl.

2. People with HDL cholesterol levels between 35 mg/dl
and 40 mg/dl can expect HDL-Plus to lead to a
7-mg/dl rise in HDL cholesterol.

3. Approximately 10 percent of people with HDL cho-
lesterol levels below 40 mg/dl have an HDL choles-
terol level above 45 mg/dl 3 months later. With use of
HDL-Plus, that percentage is hypothesized to increase
to approximately 20 percent. Of course, these percent-
ages will depend on the distribution of the partici-
pants’ HDL cholesterol levels at entry into the study.
If nearly all of the participants have an HDL choles-
terol level below 35 mg/dl at baseline, the proportion
of participants on placebo whose values rise to over 45
mg/dl will be very small.

4. An expected 20 percent of the people in the study will
suffer a heart attack over the course of the 5 years of
follow-up. Those taking HDL-Plus can expect their
risk to decrease to approximately 15 percent. Aver-
aged over the 5 years of the study, these rates translate
into about 4.4 percent and 3.2 percent annually for the
untreated and treated groups, respectively. (This “av-
erage” is calculated as the geometric mean—that is,
under the assumption of exponential rates. For exam-
ple, to calculate the annual rate for the control group,

one computes 1 — V1 — 0.15.)

Before proceeding with calculation of sample size, note
the vagueness of the above numbers. Words such as “ap-
proximately” or “about” modify each number. Clearly, the
event rate for a specific population depends on many fac-
tors—for example, the age-sex distribution in the popula-
tion recruited, other risk factors for the disease, the distri-

Epidemiol Rev Vol. 24, No. 1, 2002



Sample Size for Randomized Trials 45

bution of HDL cholesterol values at baseline, and error in
the measurement of HDL cholesterol. To speak of a 20
percent 5-year risk, as assumption 4 does, greatly oversim-
plifies reality. Calculation of an annual rate by a geometric
mean makes a very strong assumption about the pattern of
the event rate over time. Nonetheless, these kinds of crude
data and rough approximations necessarily form the basis
for many sample size calculations.

With a = 0.05 and a power of 80 percent, the percentiles
for the normal distribution are §,_,, = 1.96 and §,_z =
0.84. Plugging these numbers into the formulas yields the
following sample sizes.

The HDL Cholesterol Raising Trial. ~Applying the for-
mula 207(2) o + 2y p) /A% yields 2 X 11(1.96 + 0.84)%/
7% = 38.7. Thus, a trial with 40 people assigned to HDL-
Plus and 40 assigned to placebo will have approximately 80
percent power to show an HDL cholesterol-raising effect of
7 mg/dl. If indeed at the end of the study the observed
standard deviation were 11 and the observed difference
were 7 mg/dl, then the ¢ statistic with 78 df (80 — 2) would
be 2.85 and the associated p value would be 0.0057. When
the power was at least 80 percent, if one actually observed
the hypothesized difference, the p value would be consid-
erably less than the type I error rate. In fact, the barely
significant difference in this case is 4.9.

The Low HDL Cholesterol Prevention Trial. In the Low
HDL Cholesterol Prevention Trial, 10 percent of the pla-
cebo group and 20 percent of the HDL-Plus group can be
expected to have HDL cholesterol levels above 45 mg/dl at
the end of the 3-month study. Use of formula 5B to calculate
the sample size required to observe such a difference yields
a sample size of 199 in each group, for a total sample size
of 398, which rounds off to 400. Use of the simpler but
slightly less accurate formula SA yields 200 people in each
group, an immaterial difference. Application of formula 5C,
which employs the correction for continuity, yields a sam-
ple size of 218 people per group or 436 in all. The change
in endpoint from the continuous-variable level of HDL
cholesterol to a dichotomous variable has led, in this case, to
an approximate fivefold increase in total sample size.

The Myocardial Infarction Prevention Trial. ~Assume a 20
percent rate in the control group and a 15 percent rate in the
treated group—that is, m. = 0.20, 7, = 0.15, and 6 =
In(1 — 0.20)/In(1 — 0.15) = 1.3730. Formula 8B yields a
total sample size of 1,816, or 908 persons per group, to
achieve the desired « level and power:

[(1 +1.3730)/(1 — 1.3730) _ 908
(0.20 + 0.15) e

n=(1.96 + 0.84)

This sample size implies that 180 heart attacks would be
expected in the control group and 135 in the HDL-Plus
group. Formula 9B gives a sample size of 1,780, which
provides nearly the same answer. Use of the binomial dis-
tribution without correction for continuity, which is a very
rough approach to calculating sample size for a study that
compares death rates, yields results that are nearly the same.
If the proportions of people in the two groups who will
experience an event are 15 percent and 20 percent, substi-
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tuting the data into formula 5B yields 906 persons per group
rather than 908 as calculated by formula 8B, a formula for
the log-rank test. While the log-rank formula is more intel-
lectually satisfying to use, for a wide range of scenarios it
yields values very close to those of the binomial distribu-
tion.

The three above studies, all investigating the effects of
HDL-Plus, ask very different questions and consequently
require strikingly different resources. Under the assump-
tions of this section, asking whether HDL-Plus “works” in
the sense of affecting levels of HDL cholesterol requires a
study of approximately 80 participants followed for 3
months. Asking whether administration of HDL-Plus
“works” by materially affecting the proportion of people in
a high-risk stratum requires approximately 400 people fol-
lowed for 1 year. However, asking the direct clinical ques-
tion of whether HDL-Plus “works” in reducing the 5-year
risk of heart attack by 20 percent requires 1,800 people
followed for 5 years.

COMPONENTS OF SAMPLE SIZE: « AND 8

Typical controlled trials set the statistical significance
level at 0.05 or 0.01 and the power at 80 or 90 percent.
Table 1 shows the sample sizes required for various levels
of a and f3 relative to the sample size needed for a study
with a two-sided a equal to 0.05 and 80 percent power.

Some relative sample sizes are large indeed. For example,
moving from a = 0.05 and 80 percent power to o = 0.01
and 90 percent power almost doubles the required sample
size. More modestly, raising power from 80 percent to 90
percent increases the required sample size by approximately
30 percent.

Certain features of the design of a study will affect its
type I error rate. A trial that uses more than one test of
significance may need to adjust the « level to preserve the
true probability of observing a significant result. Multiple
endpoints, multiple treatment arms, or interim analyses of
the data require a-level adjustment. The basic problem that
leads multiplicity to require larger sample sizes is simply
stated: If the treatments under study are truly equivalent, a
statistical test will reject the null hypothesis 100« percent of
the time, but if a trial specifies more than a single statistical
test as part of its primary outcome, the probability of re-
jecting at least one test is greater than «. Think of dice. The

TABLE 1. Necessary sample size as a function of power and
« level, relative to the sample size required for a study with
an « level of 0.05 and 80 percent power:*

Power
o
70% 80% 90% 95%
0.05 0.8 1.0 1.3 1.7
0.01 1.2 1.5 1.9 2.3
0.001 1.8 2.2 2.7 3.1

* To read the table, choose a power and an « level. Suppose one
is interested in a trial with 90 percent power and an « level of 0.01.
The entry of 1.9 in the table means that such a trial would require 1.9
times the sample size required for a trial with 80 percent power and
an « level of 0.05.
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probability of throwing two sixes on a single throw of a pair
of dice is 1/36, but the probability of not throwing a pair of
sixes in 200 tosses of the dice is (1 — 1/36)'°° = 0.004. That
is, the probability of having at least one six in 200 tosses is
0.996. The more questions one asks of data, the more likely
it is that the data will show statistical significance at least
once, or, as some anonymous (at least to me) wag has
exhorted us, “Torture the data until they confess.”

If the analysis of the data is to correct for multiple testing,
the sample size should account for that correction. For
example, if there are r primary questions and the final
analysis will use a Bonferroni correction to adjust for mul-
tiplicity, the critical value will divide the « level by r, so the
factor (&, _opn + & - B)z multiplying sample size becomes
Ei—won T &= B)z. Table 2 shows the factor as a function
of power and the number of tests performed. Methods for
adjustment more sophisticated than the Bonferroni correc-
tion are available (18); the sample size calculation should
account for the particular method that is planned.

A trial that includes interim monitoring of the primary
endpoint with the potential for early stopping to declare
efficacy should account for the final critical value when
calculating sample size. This consideration usually leads to
slight increases in sample size. Table 3 shows the sample
size multiplier as a function of « level for the final signif-
icance test under several commonly used methods for in-
terim analysis.

COMPONENTS OF SAMPLE SIZE: THE VARIANCE

The sample size necessary to achieve the desired « level
and power is directly proportional to the variance of the
outcome measure in the population under study. For nor-
mally distributed outcomes, the variance ¢” multiplies all of
the other factors and the sample variance is independent of
the sample means. Therefore, calculating the required sam-
ple size requires a reasonably precise projection of the
variance of the population to be studied. Several factors
conspire to render the variance very difficult to project in
studies of continuous outcome measures. The sample vari-
ance is a highly variable statistic, so estimating it precisely
requires a large sample size. In practice, however, one often
projects the variance by culling estimates of variability from
small studies reported in the literature and from available
case series; the entire set of published data may be too small

to allow precise projection of the variance. Moreover, pub-
lished studies probably underestimate variances, on aver-
age, because underestimates of variance lead to higher prob-
abilities of finding statistically significant results and hence
a higher chance of a paper’s being published. Another
problem stems from secular changes, some due to changes
in the therapeutic milieu and some due to changes in the
epidemiology and clinical course of disease. Data in the
literature necessarily come from the past; estimates needed
for a trial come from the as-yet-unknown future. Insofar as
the past only imperfectly predicts the future, projected and
actual variances may differ. Even if the milieu remains
constant, the specific eligibility requirements in a study may
profoundly affect variability.

For binomial outcomes and tests of time to failure, the
mean and the variance are related. The usual problem in
calculating sample size in those cases stems not from an
imprecise prior estimate of the variance but from an inabil-
ity to predict the control rates precisely. The equation for
binomial variance contains the term (1 — 7). Incorrectly
projecting the event rate 7r will produce an inaccurate value
for (1 — ), which leads to a sample size that is accord-
ingly too big or too small. This part of the problem of an
incorrect value of 7 is usually minor in practice, because
(1 — ) is fairly stable over a wide range of . The major
effect of an incorrect value of 7 is misstating the value of
T, — 1,, which, as is shown below, can lead to dramatic
changes in sample size.

In planning a randomized controlled trial, an exhaustive
search of the literature on the particular measure should
precede the guessing of the variance that will obtain in the
trial itself. One useful method is to set up a simple database
that summarizes variables from published and (if available)
unpublished studies. The database should record demo-
graphic characteristics of the patients, the entry and exclu-
sion criteria used in the study, the type of institution from
which the data came, and the approach to measurement.
Helpful data include the number of patients excluded from
the analysis and the reasons for such exclusion, because
often these patients have more variable responses than those
included. Comparison of this database with the composition
of the projected study sample in the trial being planned
allows calculation of an expected variance on the basis of
the data in the studies at hand inflated by a factor that

TABLE 2. Sample size as a function of the number of significance tests, relative to the sample size
required for an « level of 0.05 and a power of 90 percent (Bonferroni inequality)*

No. of a = 0.05 a = 0.01
significance
tests Power = 70%  Power = 80% Power = 90% Power = 70%  Power = 80%  Power = 90%
1 0.59 0.75 1.00 0.91 1.1 1.42
2 0.73 0.90 1.18 1.06 1.27 1.59
3 0.81 1.00 1.29 1.14 1.36 1.69
4 0.87 1.06 1.36 1.20 1.42 1.76
10 1.06 1.27 1.59 1.39 1.62 1.99

* To read the table, choose a power, an « level, and the number of statistical tests you intend to perform.
Suppose one is interested in a trial with 90 percent power, an « level of 0.01, and four tests of significance. The
entry of 1.76 in the table means that such a trial would require 1.76 times the sample size required for a trial with
90 percent power, an « level of 0.05, and one statistical test.
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TABLE 3. Sample size relative to a study with no interim analysis*

Type of interim analysis Vgﬂgc:tltﬁe Multiplier
(reference no.) final analysis Power = 80% Power = 90%

No interim analysis 0.05 1.00 1.00
Haybittle rule (42) or O’Brien-Fleming rule with one

interim look (43) 0.049 1.01 1.01
O’Brien-Fleming rule with two interim looks 0.046 1.02 1.03
O’Brien-Fleming rule with three interim looks 0.044 1.04 1.03
Pocock rule (44) 0.030 1.16 1.13

* To read the table, choose a type of interim analysis plan and a desired power. Suppose one is interested in
a trial with 90 percent power and an O’Brien-Fleming rule with two interim looks. The critical p value at the end
of the study will be 0.046. The entry of 1.03 in the table means that such a trial would require 1.03 times the sample
size needed for a trial of 90 percent power, an « level of 0.05, and no interim analysis.

represents expected extra heterogeneity. One may use the
abstracted data from the available studies to develop simple
mathematical models of the likely composition of the study
population and the variance.

Even a careful, exhaustive search of available data may
lead to incorrect projections. The section below on sample
size recalculation addresses approaches one may adopt if,
during the trial, one becomes aware that prior projections
were seriously incorrect.

COMPONENTS OF SAMPLE SIZE: THE DIFFERENCE
TO BE DETECTED

An important determinant of sample size is the difference
between the parameter of interest under the null hypothesis
and the parameter under the alternative hypothesis. Because
sample size is inversely related to the square of that differ-
ence, even slightly misspecifying the difference can lead
to a large change in the sample size. For example, a hy-
pothesized relative risk of 80 percent and a probability in
the control group of 0.2 leads to 7, = 0.2(0.8) = 0.16
and (m, — )% = 0.04*> = 0.00016. If, however, the true
rate in the placebo arm were 0.16 instead of 0.20, then m, =
0.16(0.8) = 0.128 and (m. — m)* = (0.160 — 0.128)> =
0.0011. The ratio of the two factors is 0.0016/0.0011 =
1.45. This slight misspecification of the placebo rate leads
to a 45 percent underestimate of the necessary sample size. It
is disconcerting that such large effects on sample size result
from such small differences in rates, for in designing studies
one rarely has available sufficient information to distinguish
between rates as close to each other as 0.16 and 0.20.

Designers of controlled trials facing the problem of how
to specify that difference commonly use one of two ap-
proaches. Some people select the treatment effect deemed
important to detect. For example, in cancer clinical trials, a
new chemotherapeutic regimen may be of interest only if it
increases the probability of remission by more than 20
percent over the standard regimen. In this formulation,
the investigators specify the “difference to be detected” on
the basis of clinical importance without explicit regard to
the likely effect of the particular intervention.

The other frequently used method is to calculate the
sample size according to the best guess concerning the true
effect of treatment. In a hypertension prevention trial with
stroke as an endpoint, one projects the expected reduction in
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diastolic blood pressure, searches the epidemiologic litera-
ture to find an estimate of the number of strokes likely to be
prevented if the mean diastolic blood pressure decreased by
that amount, and calculates the sample size on the basis of
that reduction.

WHEN THE ASSUMPTIONS FAIL

The sample size formulas presented thus far result from
derivations that make simplifying assumptions about the
nature of the trial and the behavior of the participants. The
approaches assume that all participants in the trial are fully
compliant with therapy, that all of them are followed until
the end of the study, and that each participant’s outcome is
assessed. For trials studying time to event, follow-up times
are assumed to be equal for all persons or the probability of
experiencing an event after the end of follow-up is assumed
to be very small. Hazard ratios are assumed to be constant
in time. Some formulas assume exponentially distributed
failure times. Often, these simplifying assumptions reflect
reality closely enough that the methods produce reasonably
accurate sample sizes. Many times, however, the complex-
ities in the trial lead to violations of the assumptions im-
portant enough that the sample size calculations become
unacceptably inaccurate. Generally, the violations occur in
the direction that requires increased sample sizes to achieve
the desired power.

Two general types of methods are available for calculat-
ing sample size in the presence of complicating factors. One
approach posits an underlying failure-time model but allows
deviations from the basic assumptions (19-21). In the fol-
lowing sections, in dealing with methods that specify a
formal failure-time model, I use the method of Lachin and
Foulkes (19), because it produces a simple yet flexible
closed-form expression for sample size. The software pack-
age PASS (13) adopts this method in calculating sample
size for time-to-event data.

Other approaches, developed by Halpern and Brown (22,
23), Lakatos (24, 25), and Shih (26), allow the designer
considerable latitude in modeling what will happen in a
trial. The methods do not require an underlying parametric
survival model. Instead, they ask the designer of a trial to
project in considerable detail the course of the trial under
both the null hypothesis and the alternative hypothesis. All
of these authors have made their programs publicly avail-
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able. In the remainder of this review, I use the method
described by Lakatos in 1988 (25) in dealing with this
second approach. Lakatos and Lan (27) present a useful
summary of approaches to sample size calculation for the
log-rank test.

The sample size per group under the Lachin-Foulkes
model is

_ 1 1
n= |:§1a/2 \/(b()\’ﬁﬁ)(Qc + QT) +
/d)()\ono’)’c) A7 yr)
S0 T g

where failure times are assumed to follow an exponential
distribution and Q- and Q; are the proportions in the control
group and the treated group, respectively; A and A are the
hazard rates for the two groups; m. and m; are the expo-
nential loss-to-follow-up rates in the two groups; and vy and
vy are exponential parameters describing the pattern of
recruitment.

This model assumes that individuals enter during an
accrual period of R time periods. They are followed for an
additional period of time until a total of T periods is reached.
Hence, the first person entered is followed for 7T periods; the
last person entered is followed for T — R periods.

Halpern and Brown (22, 23) allow the user to specify
arbitrary survival curves. Their program simulates the out-
comes of a trial governed by these curves. Lakatos (24, 25)
envisions a set of states and periods. In each period of a
trial, a participant is in one of several states (e.g., is alive
and is receiving the assigned therapy, is alive and is receiv-
ing the opposite therapy, is deceased, or has dropped out).
The person then undergoes a series of transitions governed
by a Markov process. Some of the states are absorbing; that
is, once a person is in certain states (e.g., death), one cannot
change. Others are fluid; a participant may move into and
out of these states over time. The designer of the trial may
choose the number of periods, the pattern of recruitment,
and the transition probabilities. For example, suppose one
thinks of the trial as occurring in monthly periods, and
suppose the endpoint of interest is cardiovascular death or
nonfatal myocardial infarction. At month i, a person in the
treatment group either may be alive and still under study
treatment without having experienced an event, may be
alive and not under study treatment without having experi-
enced an event, or may have already experienced a study
event. Between months 7 and (i + 1), a person who has not
yet experienced an event and is still on study medication
(state A) may experience an event, may experience a non-
cardiovascular disease event, may become lost to follow-up,
or may stop taking medication. Any of the events incurred
by the person in state A may also be incurred by the person
who has not yet experienced a cardiovascular disease event
but is not on study medication (state B), except that this
person may restart active therapy. A person who was lost to
follow-up (state C), who experienced a noncardiovascular
death (state D), or who experienced the event of interest
(state E) will remain in that state for each subsequent period.

2

s

2
] = [Ae = Ar

If one assigns probabilities to each of these transitions, one
produces a Markov model that captures the complex of
experiences that may occur. A typical matrix may look like the
one below, where, for example, p,; represents the probabil-
ity that a person who is not on study medication and has not
experienced an outcome event will be lost to follow-up
within the period (i, i + 1).

Paai Pasi Paci Papi  Paki
PBai PBBi Ppci PBDi PBEI
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Shih’s method (26) extends Lakatos’ approach by allow-
ing many additional states. Because of the large number of
parameters at the disposal of the designer, many people
become overwhelmed by this approach. If one uses the
method carefully, noting which parameters have important
implications for sample size in a particular setting, the
method can provide valuable insights into the effect of
various scenarios on sample size and power. Especially in
the presence of nonproportional hazards, these methods
allow considerable flexibility.

In applying either the Halpern and Brown approach or the
Lakatos-type method, the user must consider carefully the
meaning of the various parameters and their relation to data
in the literature. The Lakatos method assumes an underlying
ideal model and then perturbs that model under various
failures of assumptions. Specifically, it begins with rates in
the treatment and control arms that would obtain if there
were perfect compliance, no drop-out or drop-in, and no
competing risks. It then applies the rates of these perturba-
tions to recalculate expected event rates. The Halpern ap-
proach, by contrast, starts with the perturbed model so that
the event rates already account for the effect of drop-outs
and other deviations from the ideal. Parameters derived
from the literature often do not fit clearly into either ap-
proach. A large epidemiologic database has already built in
some of the perturbations, because it reflects what actually
happens in practice. For example, cause-specific mortality
from an epidemiologic database necessarily incorporates
competing risk. On the other hand, parameters from a small,
tightly controlled trial may fit more appropriately into the
Lakatos-type approach. The user should take the parameters
from the literature and convert them as appropriate into the
parameters necessary for the method to be used.

STAGGERED ENTRY

Patients enter most controlled trials not simultaneously
but rather in a “staggered” fashion. Recruitment may take
months or even years. In trials that study time to failure,
each person may have a fixed follow-up time or the study
may have a common closeout date. In the latter case, the
time of follow-up varies by participant, with the first en-
rollee having the longest potential follow-up.

When the endpoint is binary or continuous, the time of
entry into the study is immaterial to sample size. However,
for studies testing time to failure, sample size is related to
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the total number of person-years of follow-up and hence to
the pattern of recruitment. For studies with low event rates,
small shifts in patterns of recruitment can have important
effects on the total amount of follow-up. One limitation of
the methods of Freedman (15) and Schoenfeld (28) and
related approaches is their failure to account for staggered
entry. If people within the trial have very different follow-
up times, these methods can produce quite inaccurate sam-
ple sizes.

By way of illustration, consider once more the Myocar-
dial Infarction Prevention Trial. The 5-year event rates in
the treated and control groups were 15 percent and 20
percent, respectively. The corresponding exponential pa-
rameters are Ao = —In(l — 0.85)/5 = 0.0446 and, analo-
gously, A, = 0.0325. Different assumptions about recruit-
ment and follow-up lead to different sample sizes. Consider,
for example, three sets of assumptions all with sample size
calculated by the Lachin-Foulkes method. A trial that fol-
lowed all participants for exactly 5 years would require a
sample size of 907 persons per group; if the recruitment
period extended for 3 years and the study lasted a total of 5
years, the sample size would be 918 per group. If, however,
the recruitment period lasted 3 years but the last person was
followed for 6 years, only 600 people would be required in
each group. Because equations for sample size are highly
nonlinear, the designer of a trial should calculate, rather
than guess, the consequence to sample size of a number of
feasible scenarios.

NONCOMPLIANCE

For both theoretical and practical reasons, one of the most
vexing problems in controlled trials is noncompliance. Peo-
ple who participate in trials, like patients in the ordinary
practice of medicine, do not always adhere to their assigned
therapeutic regimen. They may forget to take their medica-
tion; they may overdose; they may take their medication
sporadically; and they may stop taking their medication,
either because they suffer side effects or because they feel
better. If the intervention is a nonpharmacologic treatment,
such as diet or exercise, they may find adherence onerous.
Rigorous statistical analysis of the data must include all
people, even those who do not comply with therapy, in the
group to which they were randomized.

Noncompliance in controlled trials becomes serious if its
nature and extent compromise the expected difference be-
tween treated and control groups. A person assigned to
placebo medication who fails to take the assigned placebo is
violating the protocol; however, this type of noncompliance
does not adversely affect the power of the study, for such a
person, like the complier, is acting as a nontreatment con-
trol. Similarly, a person on an assigned treatment regimen
who stops the assigned treatment but adopts a regimen with
similar effects does not adversely affect the power of the
study. The real problem comes from persons who effec-
tively cross over to the other treatment arm. In the example
of the HDL cholesterol-raising study, a person assigned to
placebo who starts an HDL cholesterol-raising treatment
such as niacin or gemfibrozil adopts roughly the same event

Epidemiol Rev Vol. 24, No. 1, 2002

rate as the rate in the treated arms, thereby reducing the
overall difference between treated and control subjects.
Similarly, a person assigned to HDL-Plus who stops taking
the medication assumes approximately the same event rate
as the rate in the placebo arm, again reducing the overall
difference between treatment arms. By contrast, a person on
placebo who stops taking placebo maintains roughly the
same heart attack rate as the control group, while a person
in the HDL-Plus group who stops taking study medication
but begins to take open-label HDL-Plus or another HDL
cholesterol-raising drug maintains about the same heart
attack rate as the treated group.

In calculating sample size, many investigators ignore
noncompliance and perform computations as if everyone
will adhere to their assigned therapies. Ignoring the prob-
lem, however, invites more serious difficulties later, for if a
trial has considerable noncompliance, the sample size will
be insufficient to ensure the desired power.

Some researchers increase the sample size by a factor that
represents the number of people who are expected not to
comply. A typical approach is to inflate the sample size by
the factor 1/(1 — ¢), where c is the proportion predicted not
to comply. Such an approach leads to an insufficient cor-
rection. The investigator who discards the noncompliers
from the analysis violates the principle that analysis should
reflect randomization (“intent to treat’). Thus, if the infla-
tion method is an admission of the intent to analyze only the
compliers, it is suspect because its associated analytical
method is invalid. If, however, the investigator intends to
perform the as-randomized analysis, inflation by the pro-
portion of noncompliers leads to an insufficient correction,
for noncompliance reduces the effect size, which in turn
increases the necessary sample size by a factor proportional
to the square of the change in effect size. To see why the
effect is so large, suppose that the mean response in the
treated and treated control groups is u, and w,, respectively.
Suppose further that a proportion p, of persons in the treated
group stop active therapy (the so-called “drop-outs™) and a
proportion p,. of the controls stop taking their control med-
ication and begin using a therapy as effective as the active
treatment (the “drop-ins”). Then the expected response in
the treated group will be (1 — p,)u, + p,m. and the expected
response in the control group will be (1 — p ), + p.ry
so the expected difference between the two groups will be
(I = pe = pI(py — o)

Noncompliance attenuates the expected difference by the
factor (1 — p. — p,) or inflates the sample size by the square
of that factor. Usually, when the drop-in rate can be con-
sidered negligible, which it will be for a trial studying a
condition for which no therapy is available, the required
inflation of sample size is (1 — p,)>. As can be seen in table
4, which shows the necessary inflation of sample size as a
function of drop-in and drop-out rates, noncompliance can
wreak havoc in trials, either by requiring a very large increase
in sample size or by substantially reducing statistical power.
The commonly used solution, simply ignoring participants
who do not comply with therapy, has the potential to pro-
duce very biased results. One should instead build expected
noncompliance into the overall model that describes the
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TABLE 4. Sample size required relative to a trial with full
compliance as a function of the proportion “dropping in” to
active therapy in the control group and the proportion
“dropping out” of active therapy in the treated group*

Percentage of treated Percentage of controls “dropping in” to

participants active therapy
“dropping out” of
treatment 0 5 10 15
0 1 1.1 1.23 1.38
10 1.23 1.38 1.56 1.78
20 1.56 1.78 2.04 2.37
30 2.04 2.37 2.78 3.31

* To read the table, specify the percentages of people you expect
to “drop in” and “drop out” of active therapy. Suppose one expects
10 percent of the active group to drop out of active therapy and 5
percent of the control group to drop in to active therapy. Then the
sample size necessary to achieve the prespecified « level and
power would be 1.38 times the size needed if all participants com-
plied with their assigned treatment.

projected experience of the cohort to be studied.

The following example shows the consequence to power
of different strategies for sample size calculation in the face
of noncompliance. Suppose that in our HDL cholesterol
study, HDL-Plus is expected to decrease the 5-year event
rate from 12 percent to 8 percent. If recruitment is uniform
over the first 2 years of the study and if the study allocates
half of the patients to treatment and half to the control
group, a sample size of approximately 3,300 people overall
is sufficient for 90 percent power. Suppose, however, that
20 percent of the people assigned to receipt of HDL-Plus are
expected to stop taking their medications in the first year of
the study and 5 percent of the placebo group is expected to
take HDL-Plus or an equally effective HDL cholesterol-
raising drug. Then, under an as-randomized analysis, the
power will decrease to 70 percent. Had the sample size been
calculated under these assumptions concerning crossover
rates, the required sample size for 90 percent power would
have been 5,400. Note that if the analysis simply ignored
those who crossed over, 1,578 persons would remain in the
control group and 1,320 persons would remain in the treated
group. The power for this sample size would be 0.85; as
stated above, however, the high power is deceptive, because
it is associated with a method of analysis that does not
respect the randomization.

LAG TIME

Certain interventions take time to achieve their full effect.
Although cholesterol-lowering therapy, either diet or drugs,
reduces the risk of heart attack, the intervention does not
become fully effective for approximately 2 years after the
initiation of therapy. Studies designed to investigate the
effect of a preventive strategy when the outcome is a time-
to-event variable should account for the lag time before the
effect of therapy becomes manifest. In applying the epide-
miology-to-controlled-trial paradigm to compute expected
event rates, a common assumption is that the intervention
will lead to an instantaneous reduction in the event rate. A
more realistic approach may be to posit a certain time to full
effect and then model some simple smooth function to

describe the trajectory from high risk to low risk. The
judgment about the length of time to effect should be based
on underlying biology. In designing time-to-event studies
for situations where the therapy does not achieve its effect
for a while, sample size calculation should account for the
lag. Follow-up time should be sufficiently long to be able to
detect the treatment’s beneficial effect. Trivially, a drug that
does not become effective for 2 years cannot be shown to
work in a I-year study. The method of Shih (26) allows for
incorporation of lag time.

LOSS TO FOLLOW-UP

Analysis of data from randomized controlled trials should
strictly reflect the randomization. Ideally, the trial should
have complete follow-up and complete assessment of end-
points so it will yield unbiased estimates of treatment ef-
fects. Inevitably, however, some people are lost to follow-
up, such that no assessment of endpoint is possible. The
protocol should include methods for handling those lost to
follow-up, and the sample size calculations should be per-
formed in accordance with those rules. Sometimes a person
who has stopped returning for follow-up visits will be
willing to make a final visit or provide a telephone inter-
view. Every reasonable effort should be made to gather
information germane to the final outcome. Simply exclud-
ing from the analysis persons who are lost to follow-up
leads to potential bias in the inference about treatment
effect. Nonetheless, both the Lachin-Foulkes and Lakatos
methods permit censoring of persons who drop out of the
study. The methods assume that the reason for drop-out is
unrelated to treatment.

COMPETING RISKS

In time-to-event studies, some people die or are removed
from the study because they experience an event that pre-
cludes measurement of the primary event. This type of event
is a special form of dropping out, one that is outside of the
investigators’ control. Usually, analyses censor—that is,
remove from further study—the person at the time of death
or the competing event. This policy is reasonable as long as
the competing event is independent of the outcome under
investigation. For example, in a trial assessing the rate of
development of cataracts, death removes the patient from
further evaluation of the eye. Because death is unrelated to
progression of cataracts, except insofar as loss of eyesight
might be related to proneness to accidents, such censoring
should not lead to bias. In the presence of competing risks,
sample size calculations should adjust for the loss in person-
years of follow-up attributable to the censoring.

When the censoring and the event under study are more
closely linked, the censoring mechanism may differentially
affect treated and control groups in such a way as to leave
under study groups with unequal risks of the event being
investigated. In such a situation, simply adjusting the sam-
ple size does not solve the problem.
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NONPROPORTIONAL HAZARDS

Perhaps the most important practical difference between
the methods spawned by Halpern and Lakatos and the other
methods in the literature is that both Halpern and Lakatos
allow nonproportional hazards. By permitting the user to
specify the event rates for the two groups for specific
periods of time, these approaches give the designer of a trial
important flexibility. For diseases for which the treatment is
expected to cure the patient, the assumption of proportional
hazards is not reasonable: Once the patient is no longer sick,
the hazard ratio should become unity. Similarly, for treat-
ments that tend to lengthen the lives of sick patients, the risk
of mortality in the treated group may become greater than
the risk in the control group because the surviving patients
may be sicker (29).

FACTORIAL DESIGNS

Factorial designs study more than one therapy simulta-
neously. The simple 2 X 2 factorial design has two inter-
ventions, each at two levels, which results in four treatment
groups. The Post Coronary Artery Bypass Graft Trial (30),
a study designed to investigate prevention of early graft
closure after bypass surgery, included two lipid-lowering
strategies and anticoagulant therapy (warfarin) (see table 5).
The four treatment groups were: 1) moderate lipid-lowering
(goal: low density lipoprotein cholesterol levels of 130-140
mg/dl) and placebo; 2) aggressive lipid-lowering (goal: low
density lipoprotein cholesterol levels of 60—-85 mg/dl) and
placebo; 3) moderate lipid-lowering and low-dose warfarin
(1-4 mg); and 4) aggressive lipid-lowering and low-dose
warfarin (1-4 mg). To test the effect of warfarin, the two
groups receiving warfarin— groups 3 and 4—are compared
with the two groups not receiving warfarin—groups 1 and
2. If the two treatments (here, lipid-lowering strategies and
warfarin) did not affect each other, the sample size could be
calculated as the minimum size necessary to answer the
lipid-lowering and warfarin questions.

Often factorial designs are touted as providing “two for
the price of one,” and, for the case of continuous variables
with constant variances, factorial designs do in fact allow
just that. For trials with binomial and time-to-failure end-
points, sample size calculation should account for expected
interactions between the treatments and decreases in event
rates (31).

EQUIVALENCE TRIALS

Equivalence and noninferiority trials deserve special
mention in connection with sample size, because the con-
siderations for inference and hence for sample size calcu-
lations differ markedly from those of conventional trials.
The purpose of an equivalence trial (which I prefer to call a
“not-very-different-from” trial) is to prove, or at least to
indicate strongly, that two treatments have the same clinical
benefit. For example, one might want to show that the effect
of a new antibiotic does not differ from that of a marketed
one by more than a specific amount A. Logically, this
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TABLE 5. The factorial design of the Post Coronary Artery
Bypass Graft Trial

Warfarin Lipid-lowering
(1-4
mg) Moderate* Aggressivet
No Group 1 Group 2
Yes Group 3 Group 4

* Goal: low density lipoprotein cholesterol levels of 130-140
mg/dl.
1 Goal: low density lipoprotein cholesterol levels of 60-85 mg/dl.

structure turns classical statistical analysis on its head, for
one cannot “prove” the null hypothesis. The inadequacy of
the classical application in this case is clear. Suppose we
define two therapies as equivalent if their effects do not
differ significantly. Then the smaller the sample size, the
more likely we are to find the result we want. The nonsig-
nificant result will, of course, be accompanied by a wide
confidence interval.

The literature proposes two approaches, one that fixes the
width of the confidence interval for the difference between
the two treatments (32) and one that selects a sample size
that controls not only the width but also the probability that
the lower bound of that confidence interval will lie above a
specified value (33, 34). The former method, which will
produce smaller sample sizes than the latter, is analogous to
a superiority trial with 50 percent power.

MORE THAN TWO GROUPS

If the study will examine more than two groups, the
sample size calculations should reflect the primary ques-
tions under study. For example, if the study will include
four groups and the null hypothesis is that the four groups
are the same while the alternative hypothesis is that the four
groups are not the same, the primary question is tested with
a 3-df statistical test. However, usually in controlled trials
the primary question or questions in multigroup studies is a
set of 1-df contrasts. For example, if the study groups
consist of a placebo and three different doses, the usual
question is the comparison of each dose with placebo or
perhaps a hypothesis concerning a dose-response relation
among the groups.

OTHER SITUATIONS

This discussion has focused on basic scenarios the de-
signers of controlled trials typically face. Other variations
may occur. If the data in the final analysis will be stratified
by some variables, the basic methods used will change. For
continuous variables, 7 tests will become F tests in blocked
designs; sample size for stratified designs is discussed in
any standard textbook on analysis of variance. Binomial
analyses will become Mantel-Haenszel tests, and time-to-
event analyses will use stratified log-rank tests. For cal-
culations of sample sizes in these cases, see Wittes and
Wallenstein (35, 36).

If the data in the analysis will be adjusted for covariates,
the sample size calculations can incorporate those features.
For continuous variables, standard texts describe methods;
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for logistic regression, the analog of binomial endpoints, the
method of Hsieh (37) is applicable.

SAMPLE SIZE RECALCULATION

In the course of many trials, the investigators may be-
come aware that the basis of the sample size calculations
was incorrect. Specifically, as noted above, the variance or
the event rate may have been underestimated. The conse-
quence of this misspecification leads to a sample size that is
too small. Several authors have proposed formal methods
for recalculating sample size on the basis of interim data.
The published approaches share some common features:
They emphasize the importance of preserving the type I
error rate of the trial. Some are based on recalculating
variance or the event rate from the unblinded data (38) and
some from the blinded data (39). Several reviews have
addressed various features of these approaches (40, 41).

COMMENTS

Sample size calculation for continuous and binary vari-
ables in controlled trials does not differ from sample size
calculation in other fields. Time-to-event analysis, on the
other hand, poses problems peculiar to controlled trials.

For time-to-event analysis, my own approach is to calcu-
late sample sizes from at least two very different ap-
proaches. Obtaining similar answers affords comfort that
the calculations are correct. Obtaining very dissimilar an-
swers serves as a warning that something complicated is
occurring. The various methods require different parameter-
izations, such that the user must carefully think through how
to translate values from the literature to the formulas. These
translations will differ from method to method. The stan-
dard packages for sample size calculations for time-to-event
analysis use different methods, and, importantly, their man-
uals and the actual programs may not be internally consis-
tent. Often the programs are updated but the manual remains
unchanged. I would like to have recommended one of these
packages over all others, but I am reluctant to do so because
the packages are changing constantly and because each one
has different strengths and weaknesses.

Finally, a plea: Do not rush sample size calculation.
Clinical investigators have often approached me with a
request for a “quick” method of sample size calculation. The
grant is due or the protocol is just about ready to be sent for
internal approval; all it lacks is the sample size. When I was
younger, I tried to comply with such requests, but I now
refuse. Sample size is too integral a part of the design itself
to be patched in at the end of the process.
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