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TABLE I. The ! =0 phase shifts for dineutron-dineu-
tron scattering as a function of the relative kinetic en-
ergy. The Brink and Boeker potential B1 is used and
b=1.5 fm. Phase shifts on the first and second lines
correspond to N—v; =4 and 8, respectively.

E

(MeV) 0.25 3 5 10 20
Mo 2.88 2.26 2.02 1.59 1.60
N 2.89 2.27 2.02 1.60 1.05

accurate as wanted and allows for f; the tradition-
al boundary conditions on the scattering wave g;.
In this representation the removal of the trivial
states forbidden by the Pauli principle and the
numerical treatment of the Hill-Wheeler equa-
tion are quite straightforward. The difficult
problem of formulating a matching condition for
f; has been reduced to a similar but much more
familar problem for g,.
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A new reaction-mechanism—independent method is proposed for determining spins of
nuclear levels from angular correlations between « particles and heavy ions. This is an
alternative approach to the well-known Method II of Litherland and Ferguson, permitting
geometry other than 0° or 180° for the detection of the reaction particle.

Recently it has been found! that certain heavy-
ion reactions have large cross sections for popu-
lating continuum states with relatively large a-
decay widths, via the transfer of four or eight
nucleons. This has produced a revival of inter-
est in using particle-a angular correlations to
determine the spins of such states. The usual
method employed in performing such spin deter-
minations has been the Litherland-Ferguson
Method II,%2 which involves a coincidence angular
correlation between the decay-particle (a) detec-

tor and the reaction-particle (e.g., heavy ion) de-
tector located at 0° or 180°, the latter employing
an annular detector, a magnetic analyzer, or a
beam-stopping foil in front of the counter. How-
ever, in some experiments, particle detection

at 0° or 180° is either not possible or highly un-
desirable.

The present work proposes an alternative meth-
od of spin determination which is independent of
reaction mechanism. This approach does not re-
quire any specific position for the reaction-parti-

401



VoLuME 31, NUMBER 6

PHYSICAL REVIEW LETTERS

6 AucusT 1973

cle detector, so it may be placed at any conve-
nient, arbitrary angle, e.g., the angle of maxi-
mum cross section. The price to be paid for this
advantage is that the decay-particle detector
must be moved in a precalculated trajectory out
of the reaction plane, i.e., its angular position
must be moved in both polar and azimuthal coor-
dinates. However, when this is done the correla-
tion function is a simple sinusoid with a frequen-
cy characteristic of the spin of the state. This
simple form arises from a fortuituous grouping
of the zeros of the reduced-rotation-matrix ele-
ment which determine the form of the correla-
tion functions in three dimensions, as will be
seen below.

It has been shown in a previous paper? that the
correlation function for a reaction leading to a
state of spin J, which then emits a particle of
helicity o to a spin-zero final state, can be writ-
ten as

W (8, 9) =250l 2u(= V¥ y’e 0,7 (), (1)

where M is the spin projection of J on the quant-
ization or z axis, p,”’ is a complex coefficient
which characterizes the nuclear polarization of
the state J produced by the nuclear reaction, 6
and ¢ are the angular coordinates of the decay
particle in spherical polar coordinates, and
d,s’(0) is a reduced-rotation-matrix element.*

We may make two simplifying restrictions for
the case of interest here. First, since the decay
particle is an o the spin and helicity are zero
and the sum over o can be dropped. Second, if
we deal only with reactions populating the state
of spin J in which the target, incident, and out-
going particles are spinless, and if we choose
the z axis of our coordinate system perpendicu-
lar to the reaction plane, then we may invoke re-
flection symmetry® to show that J+M is even.
We may now drop the (- 1)¥ factor and (1) be-
comes

J .
W,0,0) = 2 py’e a7 () (2)
M=-J

where J+M is even. This relation is deceptively
simple in appearance; for the general case of a
nuclear reaction producing state J, the nucleus
will be polarized in some way which depends on
the reaction mechanism and is characterized by
a set of strongly M -dependent,® complex coeffi-
cients, p,’. In general, this correlation function
will be fairly complicated and difficult to use for
spin determinations. However, as it happens
there is a particular value of 8 for each value of
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TABLE I. Central zeros of the reduced-rotation-ma-
trix elements dMOJ(G), for J +M even. 6,(deg) is listed
for eachJ .

JT M=0/1 2/3 4/5 6/7 0,
0+ cee cee ecse cos cee
1- s o0 Y s e s e * 00
2t 54.7 54.7
3" 63.4 63.4
4% 70.1 67.8 68.9
5 73.4 70.5 72.1
6* 76.2 75.5 72.5 . 74.8
7" 77.9 76.9 73.9 voe 76.3
8t 79.4 79.1 78.0 75.0 77.8

J for which most of the elements of the reduced
rotation matrix in (2) are essentially zero, and
the correlation function is greatly simplified.
This can be seen from Table I, which gives the
central zeros (i.e., those nearest 90°) of the ro-
tation-matrix elements which would appear in Eq.
(2) for various values of J. Only natural-parity
states are considered here since only those would
have an allowed « transition to a 0* final state,
as we have assumed. We see that for all the J
values which we have considered there are zeros
within a few degrees of each other, in all of the
d’s, except for the “stretched” element d;,’. The
last column in Table I gives the average of the
root angles (6 ,,) for the various d’s, weighted
with the derivative of d with 6 as it crosses zero.
It is seen that these average angles are within
about two degrees of the zeros of all the d’s con-
sidered.

To an excellent approximation, tested numeri-
cally, the slope-weighted average of the root an-
gles, 6,, may be written as

93v=EM9M(J2_M2)1/2/EM(JZ"Mz)l/z, (3)

where M #J. This means that the derivative
weighting factor inhibits the contribution of the
higher M values to 6,,, since these d,,’(8) terms
have the shallowest slopes at their root angles.
This is fortunate, since Table I shows that those
values of 0, with the largest M values deviate
the most from the mean.

Thus, for all the spins considered, and pre-
sumably for higher spins as well, there is a
“magic” angle (0 ,,) at which only the reduced-
rotation- matrix elements corresponding to M
=+ J are very different from zero. The latter all
have roots only at 0° and 180° and are not far
from their maximum values in the vicinity of 8,,.
If one sets the d’s with intermediate M values
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FIG. 1. Correlation functions for the reaction 2C(a,
@) 2C*(a,). The reaction particle (&) is detected at
37.5° (c.m.) from the beam. The decay-particle (&)
correlation functions are plotted versus ¢ for two dif-
ferent values of 6. Only the d;’(6) terms with M=+3
contribute to the correlation function for 6=63.5°,
whereas both M=+1 and M =+3 terms contribute for
6=90°.

identically equal to zero, then the correlation
function can be written in the form

WJ(B avs QD) =A+B sinz(J(p - <P0), (4)

where A, B, and @, are related to the magnitudes
and phases of the coefficients p,7 and p_,7, but
for our purposes here can be treated as arbitrary
constants. Thus, the correlation function reduc-
es to a simple sinusoid-plus-constant form which
is particularly easy to interpret and analyze.

It should be remembered that the angles (6, ¢)
are center-of-mass angles and, in particular,
are those for the center-of-mass system of the
recoiling nucleus. The correlation experiment
corresponds to holding 6 fixed while varying ¢.
Since the measurements are performed in the
laboratory, it is worth noting that this simple ¢
motion in the center-of-mass frame results in a
complicated (0, ¢) trajectory in the laboratory
frame. Because of this complication, one must
prepare a table of (laboratory) polar and azimuth-

al angles which have the effect of varying ¢ while
holding 6 fixed (in the center-of-mass system).

Figure 1 shows the results of an experiment” in
which a correlation of this form was measured
for a 3~ state, both in the reaction plane (i.e., 9
=90°) and at the average root angle, 6=6,,=63.4°,
of the reduced rotation matrix. The differences
in the shapes of the two correlation functions and
the simplicity of the correlation function at the
root angles are quite striking. In this particular
case, the state was populated by the reaction
2C(a, a’)*?C*(9.6 MeV) rather than by a heavy-
ion transfer reaction, but the formalism is ex-
actly the same because the target, beam, and co-
incident particles are all spinless.

In closing, it is worth noting that 6 ,, does not
change value very rapidly with J. This slow de-
pendence of 9 ,, on J permits the use of conven-
tional plots of y? (the variance of the best fit of
W to the data) versus J. Even so, the experi-
mental angle, 6, should be the 6 ,, for the most
likely value of the spin J. The first several data
points should indicate, from the phasing, whether
the expected J is close to the correct value. Fi-
nal data, to be believable, should be taken at the
6 .y of the J assigned and the normalized x? should
be near unity.
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