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The connection between elastic and inelastic scattering of heavy ions in the combined Coulomb and nuclear

fields is discussed in terms of the Austern-Blair theory. It is shown that the first order distorted-wave Born-

approximation inelastic scattering amplitudes may be obtained from the elastic scattering amplitudes to a good

degree of accuracy. Consequently they contain essentially the same information about the nuclear potentials as

the elastic scattering S-matrix elements.

NUCLEAR REACTIONS Cal.culations of HI inelastic scattering with Coulomb-nu-
clear interference; comparison of DWBA with Austern-Blair approximation„

cases studied 5 Fe( P ' O') and 2~Mg('6O "P'); both o (~) and o'(E).

I. INTRODUCTION

For the inelastic scattering of heavy ions above
the Coulomb barrier both the long range Coulomb
field and the short range nuclear field give im-
portant contributions to the scattering amplitude.
While the inelastic scattering in the Coulomb field
is well understood, ' the situation is less clear for
inelastic scattering in the nuclear field. One of
the most successful approaches to describing the
latter has been the collective modeP which as-
sumes the nuclear excitation to be due to a non-
spherical optical potential. ' By coherently adding
the transition amplitudes due to the Coulomb and
nuclear fields, a good description of a variety of
heavy ion inelastic scattering data has been ob-
tained. 4 "

Both semiclassical theories" "and the distorted-
wave Born approximation' " (DWBA) have been
used for the interpretation of the experimental
data, which usually exhibit a characteristic dip
in the angular distributions (or excitation func-
tions) at an angle (or energy) where the elastic
scattering starts to deviate from Rutherford scat-
tering. This dip may be understood to be due to a
destructive interference between Coulomb excita-
tion and nuclear inelastic scattering. Measurement
and analysis of cross sections in the vicinity of
this interference minimum have been stated to re-
sult in a greater sensitivity of the angular distri-
butions to the optical model parameters. '

Qn the other hand, it had already been pointed
out by Austern and Blair" that the inelastic scat-
tering amplitude for strongly absorbing particles
is closely related to the elastic scattering ampli-
tude, and a formalism was developed which allows
for the calculation of the inelastic scattering am-
plitude in the nuclear field from the S matrix for

elastic scattering. This approach is particularly
attractive since it allows for a test of the collective
model without specific assumptions about the de-
formed shape of the heavy ion optical potential
which leads to the form factor for nuclear inelas-
tic scattering.

The theory of Austern and Blair has not previous-
ly been applied to the interference of Coulomb and
nuclear inelastic scattering and the question has
remained open as to whether the Austern-Blair
connection between elastic and inelastic scattering
amplitudes is accurate enough to allow for quantita-
tive calculations or whether a DWBA treatment is
necessary. In particular, the applicability of the
Austern-Blair (AB) theory would give a, natural
explanation of the observation that the DWBA treat-
ment of heavy ion inelastic scattering is sensitive
to the optical potential in essentially the same re-
gion of internuclear distances as is the elastic
scattering of heavy ions if measured to a sufficient
degree of accuracy. " Furthermore, the AB theory
would provide a simple potential-independent way
of determining if the data can be interpreted in
terms of single step nuclear and Coulomb excita-
tion processes or if coupled channel effects are
important. The present paper gives a numerical
comparison between the AB theory (slightly gen-
eralized" to include the interference between
nuclear and Coulomb excitation) and the stands, rd
DWBA treatment of this problem. The Coulomb
excitation part of these comparisons is treated
exactly and also using a more approximate treat-
ment.

The formalism is presented in Sec. II. Numeri-
cal calculations are discussed in Sec. III. A sum-
mary and conclusion is given in Sec. IV. Some
details about the calculations are given in the Ap-
pendix.
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II. THEORY

Fox inelastic scattering from the initial state i
to the final state f the transition amplitude may be
written in the D%'BA as'

TD% d3+X(-) k r y y y ~+~ k

V~(I') =Vc(r)+U(l')

The Coulomb part is given by

ZIZle /'Y, fol' t'~R~

[Z,Z,e'/2R, ][3—(r/R, )'], for r «R,

with

Z, = &.25&2'~3.

The short range nuclear part is given by

U(r) =- Vf(R„,a„;x) —iWf(RI, al; r)
—4i W,f(R„a,;1)[l f(R„a,—; r) ], (5)

where f(R) a; r) =(1+exp[(r- R)/s]]. ' is a Woods-
Saxon function ~

and

R =r g'i3+~'i') R =~ (ii 'i'+g '")
(6)

(A
Iis +g Iis)

Hex e A„Z, and A2, Z2 are the ma, ss and charge
of the projectile and target nuclei, respectively.
These definitions a.re consistent with those of Ref.
5. The matrix element for' the 2" excitation reads
in the collective mode13*'

dU(~) 4vz, c [a(s~, i-f)j"
dR 2A. + 1

where @re have introduced the defox'mation length
5„which may be connected to the deformation pa-
rameter p}t as

ln E(l. (l) the initial and final momenta are denoted
by kg and kg~ the wave functions of relative motion
calculated from a spherical optical potential V, (l )
are X' '(lIi, r) and y"'(k, , r), the intrinsic wave
functi. ons of the initial and final states are (t},
and P&, and the (nonspherical) effective interaction
in the final channel is V&. For our calculations a
spherical optical potential of Woods-Saxon shape
has been used:

homogeneous charge distribution with a sha. rp sur-
face) according to

3 2'

R(Z2, i-f)= —Z,cR, (Pg,}'.

Following the forxnalism of Satehler'" we intro-
duce the x'educed amplitudes p„„defined by

~~X

Plu, (2~+ l)li2

X' " r 4'y ~y 4'~ ) X"k~ r &'&

(10)

in terms of which the unpolarized cross section
for a pure 2" excitation is given by

da' A~A2 ~k'

(ii, +~,}2vk' k, ~'8'"' '

The reduced amplitudes may be expressed in terms
of the radial integrals by integrating ovex' the
angula, x' vax'iables

&& (g", , +Jcl ..)(liO, X0~00)

X (f&- y, , l(.p, (E,O)Y', "(H.i0), (12)

fI,(&g &) &I ~ fI,(kI, I )«(&2)~U(&)

(„)4ws, s [B(zxi-f)]'~'I,Ii'&, Ii i' 2K+ 1 gX+1

X fl (kI ) t'}Ch'.

Here, the z axis has been chosen in the incident
beam dix'ection. The angular momenta of relative
motion in the initial and final channels are denoted
by /; and l&, the corresponding Coulomb phase
shifts axe 0'" and o+~ and the radial wave functions
of relative motion are f, (ki, 1.) and f,,(k;, r). For
the sake of convenience, the radial integrals have
been written as the sum of the nuclear radial
integxa, ls g. ., and the Coulomb radial integrals

, . Here we also define the diagonal integrals:
yf

8U(I )f,(k, r) f,(k, r)«

We have chosen the sta,ndard method of connect-
ing the deformation parameter for a quadrupole
illiel'Rctloll (X = 2) 111 fll'st ol'del' to tile I'edllced
tl'RllsltloI1 probabllltp 8 (E2, i f) bp RssuIIIIIlg R

Rlld 111 'tile adiabatic limit (kI = ki) we observe 'tllRt

4, , = 5~N, . Our calculations with the Austern-Blair
approximation will involve approximations to these
diagonal 1ntegrals.
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The off-diagonal nuclear radial integrals, which
are the quantities of interest in inelastic scatter-
ing, have been approximated'"'" in three ways:

gN 6 g (E )
—g(1&

)(, l i lg~l3 (16)

ys 6 [S (E )&I (E }]&I2 =g(2&

where

T=-,'(l, + l,), E = .'(E, -+E,)

f (k, r) f(k, r)Cr =——r
8U iE

and therefore

zE 8&l&(E) lE s&l, (E) sl
2k BR 2k sl sR '

(20)

and E, and E& denote the center of mass energies
of the initial and final system, respectively. For
the sake of brevity we will denote the approxima-
tions given by Egs. (16), (17), and (18) as (1), (2),
and (3), respectively. Approximation (2) was sug-
gested by Hahne'8 and is the only one that emerges
from the formal structure of Eq. (13). It should be
emphasized that the 4, 's are complex quantities
and that great care must be taken to insure that
the phase is in the proper quadrant after the square
root. Hahne's approximation is known to be the
best of the three considered here particularly for
the scattering of strongly absorbed particles' and
has been extensively tested for 0 scattering. "
This is also borne out in our calculations for the
case of heavy ion scattering in the Coulomb-nu-
clear interference region. Approximation (1) uses
the average I value in the diagonal integral but
otherwise rather unsymmetrically emphasizes the
entrance channel. Approximation (3) is more
symmetrical than (1) and is somewhat better in
that respect. The latter two approximations, al-
though less accurate, offer the advantage that they
require only the solution of the Schrodinger equa-
tion (or a knowledge of the elastic scattering 9
matrix) at a single energy, and it is instructive
to see the rather remarkable degree of accuracy
of even these simple approximations (see Secs.
III B and C below).

It has been shown by Austern and Blair'~ that
there exists a relation between the diagonal in-
tegrals s, (E) and the elastic scattering reflection
coefficients &),(E) [see Eg. (2.1V} of Ref. 14]:

where h is any parameter of the spherically sym
metric local optical potential from which the re-
flection coefficients are calculated and R is the
radius of the same potential. Furthermore, we
may approximate the derivative Bl/BR by consider-
ing the motion of particles in semiclassical Cou-
lomb trajectories. At the semiclassical turning
radius ~, we have the relations:

l(l + 1) = kr, (kr, —2n)

ol

kr, =n+ [n'+l(l+1)]'",
where n is the Coulomb parameter defined by
n =Z,Z,e'/k'v. Differentiating this expression
with respect to x, and associating the turning
radius with the potential radius R by making the
derivative negative, we obtain the approximate
relation:

This expression is equivalent to Eg. (4.3) of Ref.
14 in the limit n -0 and l» 1. We may now sub-
stitute this expression into Eg. (21) to obtain an
expression for the diagonal integrals which can
be obtained from numerical differentiation of the
reflection coefficients:

s (E) = [n2+l(i+ I)]»2 ' =—y't"»&(E).
2l+ 1 sl

The derivatives of the reflection coefficients can
be estimated by taking numerical differences be-
tween those for adjacent / values, or to a better
approximation by using the second difference re-
lation given by Eq. (25.3.4) of Ref. 19:

This permits the derivatives and therefore the
radial integrals to be calculated directly during
an optical model calculation through the use of
approximations (1) through (3) and Eg. (24) by
proceeding from small to large E values using the
reflection coefficients already calculated. Once
the elastic scattering amplitudes are known, the
inelastic scattering amplitudes are determined and
do not depend on any details of the optical potential
beyond those which determine the elastic scatter-
ing. However, the Coulomb radial integrals, Eq.
(14), are integrated numerically using the radial
wave function f,(k, r), and therefore they depend
on the optical potential via those radial wave func-
tions.

The influence of the optical potent:ial on the Cou-
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lomb radial integrals will depend on the angular
momentum values l, and l&. For angular momenta
which are large enough that the elastic scattering
S matrix elements are essentially equal to unity
(i.e. , having an impact parameter large enough to
give pure Rutherford scattering), the dependence
of the Coulomb integrals on the optical potential is

expected to be very weak. Therefore the distorted
waves in the region of interest may be approxi-
mated by regular Coulomb functions.

In this case one may avoid the numerical integra-
tion of the wave functions and approximate the
Coulomb radial integrals according to the Sopko-
vitch approximation':

where E,(n, p) is the regular Coulomb function. "
By using approximations (16), (17) or (18), and

(26) one may, in principle, calculate the inelastic
scattering amplitude by using only the knowledge
of the elastic scattering S matrix without further
relying on any specific assumptions on the choice
of the optical potential.

III. CALCULATIONS

In this section we will examine the various ap-
proximations introduced in Sec. II. %e have chosen
as an example the inelastic scattering of "Q on
"Fe leading to the first excited 2' state in "Fe at
0.847 keV excitation energy which has been pre-
viously investigated. ' By this means we will seek
some insight into the inelastic scattering of heavy
ions. It will be shown that the Austern-Blair theory
represents a very good approximation indeed to
first-order DNBA calculations and that the con-
nection between elastic and inelastic scattering
amplitudes holds to a surprising degree of accura-
cy.

A. Application of the Austern-Blair approximation to
diagonal radial integrals in the adiabatic limit

In many applications of interest, the reactions
are well matched, i.e., the wave functions de-
scribing the relative motion of the colliding nuclei
in the entrance and exit channels axe quite similar
to the interaction region. In order to obtain some
insight into these reactions it is useful to discuss
first the adiabatic limit of the AB theory, i.e.,
the approximation represented by Eq. (24).

Here and in the following we write the elastic
reflection coefficients or radial integrals in the
following form

and define the corresponding deflection functions
by

d d
6) = —/+2 —o

dl ' dl

= (P, —@, ,) + 2(o, —o, ,),

where o, is the Coulomb phase shift.
In the classical limit, these quantities have a

very simple physical interpretation": The transi-
tion probability for a given partial wave with or-
bital angular momentum l is given by lq, l2 and the
classical deflection angle is given by 8, . See,
however, the more general discussions of Ref. 22.

Figure 1 gives a comparison in magnitude and
deflection function (i.e., phase) of the radial in-
tegrals s, calculated from the left hand side of Eq.
(16) and the corresponding values Sf a' of the
Austern-Blair theory obtained from the right hand
side of Eg. (24) for the case of "0 on "Fe at
43 MeV laboratory energy. The potential param-
eters have been taken from Ref. 9 and are listed
on Table I. Also included in Fig. 1 are the elastic
reflection coefficients q, and the deflection func-
tion 8,(Coulomb) corresponding to pure Coulomb
scattering.

The differences of the absolute phases between
8', and 8'," ' are shown in Fig. 2. It is evident from
the figures that the relation given by Eq. (24) be-
tween the elastic scattering 8 matrix and the dia-
gonal radial integrals taken in the adiabatic limit
holds to a good degree of accuracy. Characteris-
tic features of the radial integrals which have
been found also for transfer reactions with non-
vanishing Q values" are seen from Fig. 1 to be
implicit in the elastic scattering reflection coef-
ficients alone: The radial integrals are localized
in angular momentum and the inelastic deflection
functions exhibit a characteristic dip which has
previously been attributed to the dominance of
one or a few Hegge poles in the description of the
wave function of relative motions close to the nu-
clear surface. " Note that the corresponding dip
in the elastic deflection function is much smaller.
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FIG. 2. Phase difference between adiabatic diagonal
radial integrals and the corresponding AB approximation
for the scattering of 0 from Fe at 43 MeV.
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FIG. 1. Moduli and deflection functions of elastic
scattering reflection coefficients g&, adiabatic diagonal
radial integrals &, , and the corresponding AB approxi-
mation f&, for the scattering of 0 from 5 Fe at 43
MeV laboratory energy. The calculations have been per-
formed using the potential parameters of H,ef. 9. Al.so
shown is the deflection function corresponding to pure
Coulomb scattering.

For all angular momenta the elastic scattering deflec-
tion function follows quite closely that of pure Coulomb
scattering. " This may be taken as an a Posteriori
justification of the assumption in the derivation of
Eq. (24) that the particles move on Rutherford
trajectories.

As a second illustration, Eg. (24) is applied to
the scattering of "Q on "Mg at 40 MeV using the
potential parameters of Ref. 26 which had been
used for the interpretation of the two-proton trans-
fer reaction "Mg("0,"C)"Si. This is a "surface-
transparent" potential using the parameterization

of Ref. 27. The deflection functions and the values
q„S„and/, " ' are shown in Fig. 3 and the phase
difference between', and 8~(" ) is shown in Fig. 4.
Again, Eq. (24) holds to a good degree of accuracy
and the conclusions given above apply here also.
Since there is a steeper transition of the elastic
scattering reflection coefficients from g, -0 to g,
-1, there is a sharp localization of the radial
integral 8, in angular momentum space. As be-
fore, the deflection function 8, has a pronounced
minimum at the "grazing" angular momentum,
which is not present in the elastic deflection func-
tion e,~. These general features agree with the
characteristics of the radial integrals discussed
in Ref. 26.

B. Application of the Austern-Blair approximation to the
radial integrals of nuclear inelastic scattering for Q 4 0

%'e will now discuss the Austern-Blair approxi-
mation for the radial integrals d", , applied to the
inelastic scattering of "0 on "Fe (k', E„=0.847
keV) at 43 MeV incident energy. In Figs. 5-7 the
exact radial integrals 8", , obtained from the
numerical integration of Eq. (13) are compared
with the radial integrals 8g"

g y 8,' 'g. , and gg",
obtained by using the approximations of Eqs. (f6)-
(18). Also shown in the figures are the phase dif-
ferences &Q,'",. between the phase of the exact
radial integrals 4", , and the approximation 4', ~',
(0=1,2, 3). The pEase differences are of special
interest for the calculation of the interference be-
tween Coulomb and nuclear inelastic scattering.

TABLE I. Parameters used in the present calculations.

V r& a& W tl &I W r a B(E2, i —f )
(MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm) 42 (e fm )

0+ 5 Fe 30.0 1.3 0.533 7.6 1.3 0.37 0 . 1.25 0.23

0+ Mg 100 1.22 0.5 65 1.17 0.05 3.34 1.17 0.5 1.25

974
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FIG. 6. Moduli of radial integrals 4&+, and AB approx-
imations gi~j (4=1,2, 3) in Mev fm, and phase differences
&P~~) between gf) and g(~] in degrees for inelastic scat-
tering of '60 on ~6Fe at 43 MeV laboratory energy.

age energy between entrance and exit channels,
approximation (3) [Eq. (18)], one obtains an ap-
proximation w'hich is significantly better than a,p-
proximation (1), but not as good as approximation
(~).

C. Application of the Austern-Blair approximation to Coulomb
and nuclear inelastic scattering

FIG. 7. Moduli of radial. integrals gg ) 2 and AB ap-
proximations Q&[ ) ~ {&=1,2, 3} in MeV fm, and phase dif-
ferences ~fII)& & 2 between/& &„2 and/&

& 2 in degrees for
inelastic scattering of 0 on Fe at 43 MeV.

and nuclear radial integrals [see Eqs. (13) and

(14)] with those obtained by substituting the Aus-
tern-Blair approximations {1)and (2) [see Eqs.
(16) and (17)] for the nuclear radial integrals.
The adiabatic approximation (1) [denoted by AB(1)
in the figure] gives qualitatively the same result

10 )
1

)
1

I
I I

1
1

1
l

1
I

I t
2

"60+ Fe, 43 MeV

From the previous sections it has become ob-
vious that the Austern-Blair approximation can
be used with good accuracy to calculate the scat-
tering amplitude for the nuclear inelastic scat-
tering of heavy ions. A more sensitive test. of the
approxima. tion would be the calculation of the in-
elastic scattering in the combined Coulomb and
nuclear potentials, since this interference will
be sensitive not only to the absolute magnitudes
of the corresponding transition amplitudes but
also to the relative phases.

Figure 8 compares the angular distributions of
the inelastic scattering of "0on "Fe at 43 MeV
laboratory bombarding energy, predicted using
the DWBA by numerical integration of the Coulomb

C;

b
10'—

~ ------ AB (2)

] I I l I l I i I I I f I I I l I

0' 20' 40' 60' 80' 100' 120' 140' 160'
ec.m

FIG. 8. Comparison of DWBA calculation and AB ap-
proximations (1) and (2) for inelastic scattering of 0
on 56Fe at 43 MeV laboratory energy.
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FIG. 10. Dependence of the angular distributions on
the cutoff radius R ~, used in the evaluation of the Cou-
lomb radial integrals.
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FIG. 9. Comparison of DWBA calculation and AB ap-
proximation (2) for inelastic scattering of 0 on Fe at
150', 160', 170', and 180'.

as the DWBA. However, the numerical inaccura-
cies are significant enough to be experimentally
observable. Hahne's approximation" [denoted by
AB(2) in the figure] on the other hand, yields a re-
markably good approximation to the exact calcula-
tion. This is also evident from Fig. 9 which com-
pares the excitation functions at large scattering
angles obtained from the DWBA and the Austern-
Blair approximation (2).

D. On the connection between elastic and inelastic scattering

It has already been pointed out in Sec. II that the
Coulomb radial integrals [Eq. (14)]depend on the
optical potential via the radial wave functions.
One may get an estimate of this implicit dependence
on the optical potential by introducing an interior
radial cutoff R,„, into the Coulomb radial integrals
[as the lower limit of integration in Eq. (14)] and
investigating the sensitivity of the inelastic scat-
tering angular distributions on the cutoff radii.
This has been done in the calculations presented
in Fig. 10. It is evident from the figure that the
calculations are insensitive to values of R,„,~ 9

10 —
I I I I I

2
I I I

I I I I I I I

16P+ 56Fe 43 Mev

10]

E

(o

10o

----- - Ae (2)

10] I I I I I I I I I I

0' 30' 60' 90'
ec.m.

FIG. 11. Comparison of DWBA calculation and ap-
proximation AB(2)-C which uses only the elastic scatter-
ing reflection coefficients for the evaluation using the
Sopkovitch approximation (Ref. 20) of the inelastic
trans ition amplitude.

I I I I

120' 150' 1S0'

fm, as compared with the real well radius of the
optical potential of R = 8.25 fm. Even at a cutoff
radius of 11 fm a reasonable approximation to the
exact calculation is obtained. Thus, the calcula-
tions are only sensitive to the tail region of the
optical potential.

Due to the insensitivity of the calculations to the
details of the optical potential one may calculate
the inelastic scattering by using the approximation"
given in Eq. (1'f) and the Sopkovich approximation"
given in Eq. (26) for the nuclear and Coulomb
radial integrals, respectively. By using this
approximation [denoted by AB(2)-C] one may, in

principle, obtain the inelastic scattering angular
distributions by using only a knowledge of the
elastic scattering S matrix, with no assumptions
about the shape of the optical potential. The
numerical comparison with exact calculation is
shown in Fig. 11. The agreement is surprisingly
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good (although not perfect). The phase of the in-
terference pattern is well reproduced, and the
amplitudes of the oscillations are only slightly
enhanced as compared with the exact calculations.

1V. SUMMARY AND CONCLUSIONS

The connection between the elastic and inelastic
scattering of heavy ions has been investigated by
using the theory of Austern and Blair. ' The theory
is based on the collective model for nuclear ex-
citations and is expected to apply for the case of
strongly absorbed particles.

As a numerical example, the inelastic scattering
of ' 0 on ' Fe leading to the first excited 2' state
in "Fe has been chosen. It has been shown that the
theory accounts for the qualitative features of DW
radial integxals in the adiabatic limit, and re-
produces the localization of the reaction amplitudes
in angular momentum space and the occurrence of
a minimum in the deflection function in the region
of angular momenta where the radial integrals are
peaked. For the more realistic case of nonvanish-
ing Q values, the differences between the elastic
8 matrices in entrance and exit channel have been
shown to be important. For our example, the ap-
proximation of Hahne'8 has been shown to give re-
markably good results. The AB theory is accux"ate
enough to account for the nuclear part of the in-
elastic scattering and to give essentially the same
result as the DW theory. For the calculation of the
inelastic scattering in the combined nuclear and
Coulomb fields, the implicit dependence of the
Coulomb radial integrals on the details of the opti-
cal potential has been shown to be very small. If
the Coulomb radial integrals are approximated by
pure Coulomb integrals multiplied by the elastic
scattering reflection coefficients, one may com-
pletely avoid the reference to an explicit shape of
the optical potential. Even with this crude approx-
imation the qualitative features of the Coulomb-
nuclear interfex'ence are well accounted for, with

only slight deviations from DWBA predictions in
the amplitude of the interference oscillations.

The success of the AB theory in predicting the
inelastic scattering of heavy ions has several im-
plications: The information content of elastic and
inelastic scattering is, apart from the nuclear de-
formation, identical, since the inelastic scattering
amplitudes may be expressed in terms of the elas-
tic scattering amplitudes. Hence it is more a
question of practicability and cross sections
whether one measures the elastic or inelastic
scattering to determine the potential parameters.
Potentials giving identical elastic scattering am-
plitudes are expected to give also identical inelas-
tic scattering amplitudes. In fact, it has been
found empirically ' that the potential ambiguities

observed in the elastic scattering of heavy ions
cannot be resolved by measuring angular distribu-
tions of single nucleon transfer reactions and in-
terpreting them in terms of the DWBA. Since the
structures of the radial integrals encountered in

transfer reactions and in inelastic scattering are
quite similar one may expect that the potential
ambiguities encountered in the elastic and inelastic
scattering will persist for transfer reactions, and
it should be possible to obtain an understanding of
the observations of Ref. 28 in terms of the AB the-
ol y.

Furthermore, the validity of the AB theory sug-
gests a test of the single step reaction model gen-
erally used for the interpretation of Coulomb-nu-
clear inelastic scattering. By accurately measur-
ing the elastic scattering and determining the elas-
tic scattering 9 matrix, one should obtain a fit to
the inelastic scattering without further variations
of the optical potentials and by only adjusting the
deformation parameter. Any failure or inconsis-
tency of this procedure may be taken as evidence
for a failure of the reaction model or for the im-
portance of higher-order processes. In principle,
the AB theory allows also for the inclusion of
higher-order excitations. '~ The numerical ac-
curacy of the theory has, however, not yet been
investigated for the case of multiple exci.tations.

The authors are indebted to Professor John S.
Blair for valuable suggestions on the discussion
of the hierarchy of approximations developed in
Sec. II.

The calculations have been performed with the
inelastic scattering code COUI. IT which is based
on a DWBA code written by Braithwaite. '0 The
code may calculate the elastic scattering ampli-
tude of entrance and exit channels for up to 51 par-
tial waves. The Austern-Blair approximation g~"~,
corresponding to Eq. (24), is calculated by using
Eq. (25) for the derivatives of the elastic scattering
reflection coefficients. The first 51 nuclear and
Coulomb radial integrals may be either integrated
numerically (with no limitation on the number of
integration steps) or substituted by using the ap-
proximations corresponding to Egs. (16)-(18)and

(26), respectively. For the higher partial waves
the nuclear radial integrals are neglected and the
Coulomb radial integrals are calculated with the
subroutine ITEH of Samuel and Smilanksy3' which
calculates the electric quadrupole radial matrix
elements for Coulomb excitation by means of an
iteration procedure. In our calculations a total of
230 partial waves has been used and the first 51
Coulomb radial integrals have been integrated up
to 150 fm.
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