PHYSICAL REVIEW C

VOLUME 43, NUMBER 6

JUNE 1991

Analysis of multiparticle Bose-Einstein correlations
in ultrarelativistic heavy ion collisions

John G. Cramer
Department of Physics, University of Washington, Seattle, Washington 98195
(Received 22 October 1990)

We introduce the coalescence variables, a set of three boost-invariant kinematic quantities that
may be used in analyzing n-particle correlations. These variables characterize the invariant mass
of an n-particle system, and in three directions separate the timelike and spacelike characteristics
of the source. The analytic Kolehmanien-Gyulassy model is generalized to give two-, three-, and
four-particle correlation functions, with coherence and Coulomb corrections applied to the basic
formalism. We demonstrate the relation of the coalescence variables to the radius and duration
of the source, and find that for sufficiently large transverse radii, Coulomb effects can suppress
the structure of the Hanbury-Brown-Twiss correlations so that no significant information on

source size can be obtained.

I. INTRODUCTION

In ultrarelativistic collisions between heavy ions, the
number of like-sign pions produced in a single collision
is expected to be on the order of 103. Because of this
very large multiplicity, Hanbury-Brown—-Twiss correla-
tions between pions may offer a powerful probe for the
investigation of such collisions on an event-by-event ba-
sis. The numerical factors implicit in multiparticle Bose-
Einstein interferometry imply a strong tendency for pions
to cluster or “coalesce” in the same region of momentum
space due to their mutual Bose-Einstein reinforcement.
Therefore, interferometry using pions clustered in mo-
mentum space may offer an important analysis tool. In-
deed, it has been suggested! 2 that pion “speckle interfer-
ometry,” i.e., the high-order correlations of pion clusters
or “speckles,” might be used to extract detailed informa-
tion on the size, shape, time duration, and eccentricity
of the source of pion emission.

A fundamental problem encountered in interferometry
using correlations between n particles, where n is larger
than 2, is finding a compact set of independent Lorentz-
invariant kinematic basis variables for presenting and an-
alyzing the correlations. The relative vector momenta of
n particles require 3*~! independent variables for com-
plete specification. This number of parameters is far too
large and too inter-related for meaningful analysis. For
example, analysis using the relative vector momenta in
the correlation of a five-pion system would require 27 in-
dependent momentum variables.

Goldhaber® was able to compare the correlations of
two and three pion systems by plotting both correla-
tion distributions against a variable which he called @2,
the mean-square deviation of the invariant mass of the
n-pion system from its minimum possible value, i.e.,
Q? = E*E, — (npug)?. Liu et al* have employed this
@? variable in analyzing two- and three-pion correlations
in Ar + Pb and Ar + KCl heavy ion collisions. For the
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purposes of the present discussion, we will refer to @ as
the overall coalescence variable, since it goes to zero when
a system of pions has coalesced to occupy a minimum
volume of momentum space. The use of Q? and simi-
lar variables in the analysis of correlations of relativistic
particles has been criticized®® because, although it is
a Lorentz-invariant quantity, it mixes the timelike and
spacelike characteristics of the source. In central colli-
sions of ultrarelativistic heavy ions the time and space (or
longitudinal and transverse) source characteristics pro-
vide independent information about the collision, and it
is important to keep these separated in the analysis of
multiparticle correlations.

The invariant mass of a two-pion system can exceed the
minimum value of 2 1, only if the two pions have nonzero
relative momentum. Consider the distribution of emit-
ted pions in a spherical coordinate system (r, 6, ¢) where
the beam direction is the z or longitudinal axis defined
by @ = m/2 and the locus @ = 0 is the transverse (equato-
rial) plane. Thus, 6 has the range —7/2 < 0 < /2. The
relative momentum between a pair of emitted pions can
have longitudinal (0), transverse (¢), and radial (r) com-
ponents. In the context of Hanbury-Brown-Twiss corre-
lations, these three momentum differences sample sepa-
rate geometrical aspects of the pion source and should, if
possible, be investigated separately. In what follows, we
propose a decomposition of the Goldhaber coalescence
variable into longitudinal, transverse, and radial coales-
cence components, thereby preserving this distinction.
We then apply this analysis technique to a comparison of
two-, three-, and four-pion systems using a generalization
of the analytic model of Kolehmainen and Gyulassy.”8

II. COALESCENCE
IN THE 2-PARTICLE SYSTEM

We will use the following notation. The rest mass of
the ith particle is p,, i.e., the pion mass. Its total en-
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ergy is w;, its vector momentum is P;, its transverse mo-
mentum is p;, its transverse mass is m; = \/p? + p2, its
longitudinal momentum is ¢; = y/w? — m?, its azimuthal
angle in the transverse plane is ¢;, its polar angle forward
or backward of the transverse plane is ;, and its rapidity
is yi =  In[(wi + ¢i)/(wi — ¢;)] = In[(1 + sin 6;)/ cos 6;].
We will also employ the useful rapidity relations w; =
m; cosh(y;) and ¢; = m;sinh(y;). We will take ¢ = 1
and express all of the above quantities except angle and
rapidity in energy units, usually MeV.

For a two-particle system, the Goldhaber coalescence
variable is given by

Q5 = (w1 + w2)? — (P14 P3)® — (2px)°
= (w1 + w2)? — (p1 cos 1 + p2 cos ¢2)°
—(p1sin ¢y + pasin ¢a)® — (g1 + ¢2)% — (2ux)? .
(1)

With suitable algebraic manipulation, this can be re-
duced to the following form:

Q% = 2{ mims [1 + 2sinh? (%)]
—p1p2 [1 — 2sin® <£)'1‘—;-22>] - M,Zr} . (2)

We make the following definitions of dimensionless co-
alescence variables:

1
Cor(1,2) = —

™

2mimy sinh 42

; ®3)

$1— 42

2 ) (4)

1 .
Cor(1,2) = ,u_— 2p1p2 sin

m

1
C2r(1,2) = p_\/mlmZ — pip2 — p2
1
= H_\/[(pl — p2)? — (m1 — m2)?]/2

= H—lw\/[(mx +m2)? — (p1 + p2)? — (2ur)?]/2 .
(5)

Here Cyy, is the two-particle longitudinal coalescence, Cop
is the two-particle transverse coalescence, and Capg is the
two-particle radial coalescence. They are dimensionless
variables that specify the invariant mass deviation rela-
tive to pr, the pion mass.

Note that Cyr=0 when y;=ys, that Car=0 when
$1=¢2, and that Cyrg=0 when either m,;=m4 or p;=p,
(since each equality implies the other). The overall two
particle coalescence @ is given by the relation Q% =
2u2(C3. + C2p + C2g), i.e., the three coalescence com-
ponents add in quadrature, as would be expected of or-
thogonal coordinates.
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III. COALESCENCE
IN THE n-PARTICLE SYSTEM

Now let us consider the case of n correlated particles,
where n>2. The n-particle coalescence is given by

which with suitable manipulation becomes

- . Yi — Yj
QZ = Zm“nj [1 + 251nh2 (—7—i>:|

i#£j
- Zn:Pin [1 — 2sin’ <£Z—;—¢—]>] - Zn:/l?r - (M
ey i3
Thus, using definitions (3), (4), and (5),
Q2= 22 S (G0 ) + Cinin ) + Clne )] (8)
i<j
=2u2(CE + C2p + C2R), 9

where

n
Clx =) Cix(i,j) with X =L, T, or R.
i<j

(10)

These generalized coalescence variables can be calcu-
lated for a system composed of any number of pions,
given the momentum components of each particle of the
system. The coalescence variables for all particle num-
bers have the same significance, denoting the amount by
which the momentum mismatch along a particular axis
increases the invariant mass of the system, in units of
pr. Thus, as we will see, coalescence variables can be
useful in comparing n-particle correlations over a range
of values of n.

For the purposes of the comparisons presented in this
paper we will use a simple linear parametrization of the
momentum variables in terms of the kinematic param-
eters yo, 6y, mg, ém, ¢o, and 8¢, the central value
and difference of the rapidity, transverse mass, and az-
imuthal angle, respectively. For the two-particle case,
we will take y1=yo + 8y, yo=yo — by, mi=mg + ém,
mo=mg — ém, ¢1=¢o + 6¢, and ¢a=¢o — 6¢. Thus
mo=(my + my)/2 and ém=(m, — my)/2, etc. For the
three-particle case, we will take y1=yo + 6v', y2=vo,
y3=yo — 6y', mi=mg + ém’, ma=mgy, mz=my — dm’,
d1=¢o+6¢', p2=¢0, and ¢3=¢o—6¢’, where 6y'=0.866y,
ém’=0.866m, and §¢'=0.866¢4. For the four-particle case,
we will take y1=yo +6y", y2=yo +6y"/3, ys=yo — 6y /3,
Ya=yo—6y", mi=mo+ém’”, ma=mo+ém’ /3, mzg=mg—
dm'" /3, ma=mo — §m”, ¢p1=do + 8¢", ¢2=d0 + 64" /3,
d3=¢o — 64" /3, and da=¢o — 64", where 6y"'=0.726y,
§m"'=0.726m, and §¢"=0.726¢.

Reduction factors have been applied to the n = 3 and
n = 4 difference parameters above to give the correspond-
ing coalescence variables about the same dependence as
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FIG. 1. The coalescence variables Cp 1, Cnr, and Crr for

n = 2 (solid curves), n = 3 (dashed curves), and n = 4 (dot-
dashed curves) are plotted against the kinematic difference
parameters 8§y, 8¢, and §m for yo=¢o=0, and mo=3 .

the n = 2 coalescence variables. Figure 1 shows plots
of the coalescence variables C,r, Cn,r, and C,r plot-
ted against the difference parameters 8y, ¢, and ém for
Yo=¢0=0, n = 2, 3, and 4, and my=3u,. We see that
all three coalescence variables are single valued mono-
tonically increasing functions of §y, §¢, and §m and that
Cax, Csx, and Csx (X = L, T, and R) have similar
behavior and normalizations.

IV. APPLICATION TO 2, 3,
AND 4-PARTICLE CORRELATIONS

Up to now, investigations of the correlations of pions
produced in ultrarelativistic heavy ion collisions have fo-
cused on two particle systems, with a few studies of
three-particle correlations. However, we expect that with
the higher multiplicities expected collisions at RHIC and
LHC energies, correlations with larger numbers of pions
(and kaons) will play a prominent role in the analysis.
Here we will use the coalescence variables to compare
the correlations of two to four pions.

We are particularly interested in the competition be-
tween the rising strength due to Bose-Einstein attrac-
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tion exhibited by the general n-particle correlation R,
which for neutral particles has a maximum value of n!
when the overall coalescence @? = 0, and the strong
suppression of the charged pion correlation REF due
to Coulomb repulsion, which behaves approximately as
F(Navg)™(*~ /2 due to the mutual repulsion of charged
pions that are closely correlated. Here F' is the Gamow
penetrability and 7 the average Sommerfeld parameter,
both defined below, which characterize the Coulomb in-
teractions of the system. This competition ultimately
depends on formidable and unresolved theoretical issues,
particularly the derivation of a reliable expression for
multiparticle Coulomb effects. In the present work the
Bose-Einstein/Coulomb competition will be investigated
through the use of an analytic model for the correlations
and a simple but plausible Coulomb correction proce-
dure.

Kolehmainen and Gyulassy”>® have presented a boost-
invariant analytic model for predicting the one- and two-
particle correlations of pions from an ultrarelativistic
heavy ion collision. The model is able to obtain an an-
alytic expression for the correlation distribution by em-
ploying a simple pseudothermal description of the pion
momentum distribution function. It uses the inside-
outside cascade model® to describe the pion emission pro-
cess and assumes that the emissions are completely in-
coherent. It characterizes the pion-emitting volume with
three parameters, the transverse radius 77 of the emit-
ting volume, and the time constant 7y of the emission
process, and the pseudo-temperature T of the source.
The pseudo-temperature of the Kolehmainen and Gyu-
lassy model is related to the physical temperature U of a
thermal model by the relation T' = 1.42U — 12.7 MeV. In
the calculations below, we will usually take U=y, which
is equivalent to T=186.1 MeV.

The one-particle inclusive pion yield given by this
model is

d3 N,
3P

= AKo(m1/T) , (11)

where A is a normalization factor and Ky(2) is a modified
irregular cylindrical Bessel function of order zero with
possibly complex argument z. We will also consider the
n-particle correlation distributions, here defined as the
ratio of the n-particle inclusive pion yield to the product
of n one-particle inclusive pion yields, i.e.,

a3 N,
Pn) = Fp P, /H P, (12)

The two-particle correlation distribution for neutral par-
ticles (superscript [0]), in the Kolehmainen-Gyulassy
model, is given by

R.(Py,. ..

ROY(Py,Py) =1+ BY (13)
where
G(Py, P
By = | ( 1 2)' (14)

VGP 1, PGP, Py)
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and
2 (TT\2
G(Pl,Pz) = AI(Q(\/ulz) exp —pr (ﬁ') , (15)
with
Ap?y = pi + ph — 2p1p2 cos(¢1 — ¢2) , (16)
and

my + moq i z
U1p = [T + —h—(m1 - mz)]

2 2
(51%) + (%) ] m,ms sinh?

+ 4 n-—v

17)

In terms of the coalescence variables we can write (16)
and (17) as
Ap?y = (my 4+ ma)® + 2u2(C3p + Cir), (18)

and

2
Ujp = oT + 7(m1 - m2)]

() + G| seen.

Note that u;5 is a complex quantity that becomes purely
real when (m; — my)=0. The quantity (m; — ms) in
i

[ml + moy 1T

+2 (19)
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Eq. (19) is closely related to the radial coalescence Cspg,
but no simple function of the latter can be used in the
equation.

In the present work we have generalized the
Kolehmainen-Gyulassy model summarized in Egs. (11)-
(19) in several ways. First, following the work of Biya-
jima et al.,*! we have used quantum optics (QO) interfer-
ence diagrams to derive the two-, three-, and four-particle
correlation distributions for neutral particles in terms of
the Kolehmainen-Gyulassy model with the addition of
coherence. The Biyajima formalism includes the possi-
bility of a coherent contribution to particle emission, but
implicitly assumes that there is only one source of co-
herent emission. The two-particle correlation function,
calculated in this way, is a generalization of Eq. (13) and
has the following form:

RON(Py,Py) =1+ 2B% + 2¢(1 — €)Bys . (20)
Here the parameter ¢ specifies the fraction of the net
emission of the source that is incoherent and is defined
as €=Mincoh /(Mincoh + Mcon), Where mg is the pion mul-
tiplicity of type z. When coherent emission of pions is
significant, ¢ < 1 and this has the effect of reducing the
peaking near @Q?=0 of the correlation distributions. In
the calculated examples presented later in this paper we
will assume that the pion source is completely incoherent,
ie., e=1.

The three neutral particle correlation derived from QO
diagrams is

RO (P, Py, Ps) = 1 +€2(B2, + B2, + B2,) + 263(B12B23 Bs1)

+2¢(1 — €)(Bi2 + B2z + Bai) + 2¢%(1 — €)(B12B23 + B13Baz + B21Bi3) ,

and the four neutral particle correlation is

(21)

REN(P1, Py, Py, Py) = 1+ 2(BY, + Bl + Bl + By + B}, + B3,)

+ 2€3(B12B23Ba1 + B12BaaBai + Bi3BsaBay + B3 BzaBas)

+ 2€*(B12B23B3aBa1 + B12B24Baz B + B3B3z B24Bai)

+e*(B2,B3, + Bi3B2, + B%,B%) + 2¢(1 — €)(Bi2 + Bis + Bia + Bas + Baa + Bsa)

+ 3¢*(1 — €)(B12B33 + B12 B4 + B13Bas + BagBss + B12Bsy + B12Bay + B13Ba1 + BasBa)

+ 4€*(1 — €)*(B12B3a + B13B24 + B1aBas)

+ 2¢%(1 — €)(B12B23B34 + B12B24Bas + B13Bas Bas + B12B23Bai + B12B2aBsy + Bi3Bs2Bay
+ Bi12B3aBay + B12B43B31 + B13B24Bay
+ B23B34Bay + B24B43B3) + B33y B2y Bay)

+ 263(1 — €)(B12B2, + B13B2, + B1aB% + B2,Bsq + B2;Boy + B2, Ba3).

Note that for completely incoherent systems, the (1 —
€) terms in the above relations will vanish, resulting in
considerable simplification of the equations.

As a second generalization of the Kolehmainen-
Gyulassy model, we have included an approximate
correction for the mutual Coulomb repulsion of the
emitted identical particles. This allows us to obtain
RE,*J(Pl, ..., Py), the n-particle correlation distributions
for charged particles (superscript [+]). Following Gyu-

(22)

f

lassyet a we have used for two charged-particle cor-
relations a Coulomb correction of the following form:

10
L,

REN(P,, Py) = F(n2) RI(Py, Py) | (23)

where F(1n12) is the Gamow penetrability function
2mm2/exp(27mz2) — 1] and 712 is the Sommerfeld param-
eter a/B12. Here « is the fine structure constant and S
is the velocity of particle 1 relative to particle 2 divided
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by the velocity of light. For the case of pions with kinetic
energies comparable to p,, the quantity 277 in the pen-
etrability function is typically much less than 1, which
implies that an expansion of the Coulomb correction in
powers of 2w should converge rapidly. As a correction
for final-state-interaction effects, the use of the Gamow
penetrability is a valid approximation only when non-
Coulomb final-state interactions can be neglected and
when the Bohr radius of the system of two charged parti-
cles is large compared to the dimensions of the emission
source. For pions, the two-particle-distance scale implied
by the Bohr radius is about 193 fm, a large distance com-
pared to expected source sizes of 4 to 40 fm.

Liu et al.,* have suggested an ad hoc product-form
Coulomb correction for a system of three charged par-
ticles of the form [F(n12)F(n23)F(n31)]. Here F(m;;) is
the Gamow penetrability, and #;; the Sommerfeld pa-
rameter describing the Coulomb interaction of particles ¢
and j. We can provide some justification for a correction
of this form by considering the following gedanken ezper-
iment: Let us “assemble” an n-pion system by bringing
the pions one at a time from infinite relative momentum
down to the momentum state appropriate to the 7 value
of the new pion with respect to the already assembled
pions. In this case the net penetrability of the assem-
bled system, and therefore the suppression of the correla-
tion, will be of the form [F(7) F(27) F(39) - - - F((n—1)7)],
where 7 is some average Sommerfeld parameter of the
various pion pairs. For two charged pions, this is just
the Coulomb correction given in Eq. (23). For three
charged pions, this leads to a Coulomb correction of the
form [F(7) F(27)]. To order n?, this can be approximated
by [F(#)]3, essentially the correction suggested by Liu et
al* However, a better approximation that is valid to or-
der 17 can be obtained by introducing 7', the n = 3
effective Sommerfeld parameter, which is defined by the
relation F(n)F(2n)/[F(n)]® = 1+ O(n?). We use the
series expansion

r_ 1,2 __ 1,3 _ _19 .4 11 .5 967 _ .6
T =24 87— 572 — 5%+ 1218 5296357
where z = mn and z’ = w7’. The Coulomb correc-

tion can then be symmetrized in the particle indices
to give a correction valid to order n? that has the
form [F(n|4)F (n33)F (n51)]. The three-particle correla-
tion function for charged particles is then

REI(Py,P,, P3)

= [F(n}5) F(h3) F (03 )| R (P1, P2, P3) ,  (24)

where 7;; is the n = 3 effective Sommerfeld parameter
defined above.

This conceptual approach to Coulomb corrections can
be extended to a system of four charged particles, where
it has the form F(#)F(27)F(37). To order »?, this can
be approximated by [F(7)]®, but a better approximation
valid to order 5 can be obtained by introducing 75", the
n = 4 effective Sommerfeld parameter, which is defined
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by the relation F(n)F(277)F(3n)/[F(77”)] =1+ 0.
We use the series expansion

" 2 .3 _ _167

_ 2,2 2 4 18091 .6
zm =z + 3T 57%° — 3430% T3

362" + 286575 2"
where £ = mn and z” = #nn’’. The Coulomb correction
can then be symmetrized in the particle indices to give a
correction valid to order n” of the following form:

[F(nY2) F(ni's) F (n1s) F(n33) F (154) F(n34)],

where 77} is the n = 4 effective Sommerfeld parameter
defined above. The four-particle correlation for charged
particles is then

RE;:H(PlaPZ,PIi;P‘t)

= [F(n{2) F(ni3)F (n4) F (n33) F (134) F (134)]

x RO(P,,P,, Ps,P,) . (25)

The Coulomb corrections of Egs. (24) and (25) are based
on a somewhat schematic conceptual model, the use of
which is justified only because a more accurate multi-
particle Coulomb correction is not available. We note,
however, that both of these Coulomb corrections exhibit
an important and required property: When one of » cor-
related particles z is made electrically neutral or given a

10.0
5.0
R,
1.0
0'5 1 1 1 1 ' 1 1 1L 1 | 1 A1 1 I 1 1 1 1
0 1 2 3 4
CnL (l’l‘ﬂ')
FIG. 2. Comparison of two-, three-, and four-particle cor-

relation distributions for neutral pa.rtlcles R (dashed curves)
and for charged particles R (solid curves) as functions of
the longitudinal coalescence Crr. The parameters used are
given in the text.
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large relative velocity [so that all of its penetrability fac-
tors F(n;z) — 1], the Coulomb correction reduces to that
appropriate to the next lowest order correlation, i.e., the
correction for n — 1 particles.

Figure 2 shows a comparison of neutral and charged
two-, three, and four-particle correlation distributions

Li,o] as functions of the longitudinal coalescence. The
fixed parameters for this plot are yo=¢o=6m=6¢=0,
e=1, my=3p,, r7=1.0 fm, 70=2.0 fm/c, and 7" = 185.5
MeV. The longitudinal coalescence was varied over 0 <
Chr < 4. The dashed lines show the neutral-particle
correlation and the solid lines show the charged-particle
correlations. The effect of the Coulomb force in suppress-
ing the correlation at small relative momenta is apparent
in these curves, as is the greater enhancement over uncor-
related background (S,=1) of the n-particle correlation
distribution.

Figure 3 shows a comparison of neutral and charged
two-, three-, and four-particle correlation distribu-
tions R[ni'ol as functions of the transverse coales-
cence. The fixed parameters for these calculated func-
tions are yp=8y=¢o=6m=0, e=1, mo=3p,, rr=1.0 fm,
70=2.0 fm/c, and T = 185.5 MeV. The transverse coa-
lescence was varied over 0 < C,,r < 4.

Figure 4 shows a similar comparison of neutral and
charged two-, three-, and four-particle correlation dis-
tributions R&i’ol as functions of the radial coales-
cence. The fixed parameters for these calculated func-

10.0
5.0
Rn
1.0
05 1 1 1 1 L 1 1 1 1 L L1 11 I j — 11
(o] 1 2 3 4
CnT (Fl'n)
FIG. 3. Comparison of two-, three-, and four-particle cor-

relation distributions for neutral particles R (dashed curves)
and for charged particles R[ni] (solid curves) as functions of the
transverse coalescence Crr. The parameters used are given
in the text.
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tions are yYyo=0y=¢o=00=0, e=1, me=3u,, rp=1.0 fm,
70=2.0 fm/c, and T' = 185.5 MeV. The radial coalescence
was varied over 0 < Crr < 1.4.

V. DEPENDENCE
ON TRANSVERSE RADIUS Rr

Equations (15) and (18) imply that the function
G(P,,P>) has a term that is a Gaussian exponential with
an exponent of the form —%[(uﬂ-/h)T‘TCQT]Z and a simi-
lar term involving Csg. This means that the transverse
has a complementary relationship with both C,r and
Crr; i.e., the widths of the correlation peaks in these co-
alescence variables depend on 1/rp. This dependence is
illustrated in Figs. 5 and 6, in which the transverse radius
is varied to show its effect in the transverse and radial
correlation peaks. The longitudinal correlations are not
shown because the longitudinal correlation peak widths
are independent of rp.

Figure 5 shows the charged 2-, 3-, and 4-particle corre-
lation distributions R&i] as functions of the transverse co-
alescence C, 1 over a range of values of 71, the transverse
radius of the source. The fixed parameters for these cal-
culated functions are yo=¢o=6m=6y=0, e=1, mo=3u,,
T0=4 fm/c, and T' = 185.5 MeV. The transverse coales-
cence was varied over 0 < Cp,r <1.8. The separate curves
correspond to transverse radius value of rp = 1 (highest
curve), 2, 4, 8, 16, and 32 fm (lowest curve).

1T T T T T LI T T T T ‘ T 1 1 T T T T
10.0
5.0
R,
1.0
0'5 d 1 1 11 l 1 1 1 1 I 1 1 1 1 l - 1 1 1 l 1 1 1
0 0.25 0.5 0.75 1
CnR (ﬂ’n)
FIG. 4. Comparison of two-, three-, and four-particle cor-

relation distributions for neutral particles R (dashed curves)
and for charged particles RIF (solid curves) as functions of
the radial coalescence Crp,r. The parameters used are given in
the text.
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Figure 6 shows the charged 2-, 3-, and 4-particle cor-
relation distributions Rg,i] as functions of the radial coa-
lescence Cp, g over a range of values of rp, the transverse
radius of the source. The fixed parameters for these cal-
culated functions are yo=¢o=0m=06y=0, e=1, mo=3pu,,
170=4 fm/¢, and T = 185.5 MeV. The radial coalescence
was varied over 0 < Cpr <0.4. The separate curves cor-
respond to transverse radius value of 7y = 1 (highest
curve), 2, 4, 8, 16, and 32 fm (lowest curve).

We note in Figs. 5 and 6 that while the peaking of the
correlation distributions is very strong when the source
radius is small, it becomes progressively weaker for larger
radii. This is because the peak of the correlation distri-
bution is forced into the small coalescence region which is
dominated by strong Coulomb repulsion. The extraction
of transverse source radii with charged pion Hanbury-
Brown—Twiss correlations therefore will not be possible
when the transverse radius of the emitting source ap-
proaches a value of rp =32 fm.

VI. DEPENDENCE ON TIME CONSTANT 7

Because the modified Bessel function Kg(z) has the
asymptotic behavior of an exponential in 22, Egs. (15)
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FIG. 5. The 2, 3, and 4 charged-particle correlation dis-
tributions R(ni] as functions of the transverse coalescence C, 1
over a range of values of rr, the transverse radius of the
source. The parameters used are given in the text. The sepa-
rate curves correspond to transverse radii of 77 = 1 (highest
curve), 2, 4, 8, 16, and 32 (lowest curve) fm.
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and (19) imply that the function G(P;,P5) contains a
term, which is a Gaussian exponential with an exponent
of the form —2[(pr /h)79C2L]?, and a similar term involv-
ing (m; — m3), which is related to Cog. This means that
the emission time constant 79 has a complementary re-
lationship with C,,; and possibly also with C,,g. This
dependence is illustrated in Figs. 7 and 8, in which the
transverse radius is varied to show its effect in the lon-
gitudinal and radial correlation peaks. The transverse
correlations are not shown because its correlation peak
width is independent of 7.

Figure 7 shows the charged 2-, 3-, and 4-particle corre-
lation distributions R as functions of the longitudinal
coalescence Cy, 1, over a range of values of 7y, the emission
time constant of the source. The fixed parameters for
these calculated functions are yo=¢o=6m=6¢=0, e=1,
mo=3pr, rr= 10 fm, and T = 185.5 MeV. The longi-
tudinal coalescence was varied over 0 < C,,; <1.8. The
separate curves correspond to source duration values of
1o =1 (highest curve), 2, 4, 8, 16, and 32 fm/c (lowest
curve).

Figure 8 shows the charged 2-, 3-, and 4-particle cor-
relation distributions RLi] as functions of the radial co-
alescence C, g over a range of values of 79, the emission
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FIG. 6. The 2, 3, and 4 charged-particle correlation distri-

butions RLi] as functions of the radial coalescence C,r over a
range of values of rr, the transverse radius of the source. The
parameters used are given in the text. The separate curves
correspond to transverse radii of r = 1 (highest curve), 2, 4,
8, 16, and 32 (lowest curve) fm.
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time constant of the source. The fixed parameters for
these calculated functions are yo=¢o=6m=64=0, c=1,
mo=3pr, rr= 10 fm, and T = 185.5 MeV. The radial
coalescence was varied over 0 < Cp,gr <0.4. The sepa-
rate curves correspond to source duration values of 1y =1
(highest curve), 2, 4, 8, 16, and 32 fm/c (lowest curve).
Figures 7 and 8 show a problem in the extraction of the
source emission time constant which is similar to that en-
countered in extracting the source radius but less severe.
When the transverse radius is about rp ~10 fm, the cor-
relation peak disappears in the longitudinal correlation
(Fig. 7) but persists in the radial correlation (Fig. 8).
This rather unexpected result could permit extraction of
7p in systems with moderate transverse radii but very
large emission time constants, if such sources exist.

VII. DEPENDENCE
ON PSEUDO-TEMPERATURE T

Equations (15) and (19) also imply that T, the pseudo-
temperature of the source will have some effect on both
the longitudinal and radial correlations. This dependence
is illustrated in Figs. 9 and 10, in which the pseudo-
temperature is varied by a factor of 4 to show its ef-
fect on the longitudinal and radial correlation peaks.
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FIG. 7. The 2, 3, and 4 charged-particle correlation dis-
tributions Rgfh] as functions of the longitudinal coalescence
Chi over a range of values of 7o, the emission time constant
of the source. The parameters used are given in the text. The
separate curves correspond to source emission time constants
of 70 =1 (highest curve), 2, 4, 8, 16, and 32 (lowest curve)
fm/ec.
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The transverse correlations are not shown because, in
the Kolehmainen-Gyulassy model, the correlation peak
width is independent of temperature.

Figure 9 shows the charged 2-, 3-, and 4-particle cor-
relation distributions RIY! as functions of the longitu-
dinal coalescence Cj,p over a range of values of T, the
pseudo-temperature of the source. The fixed parame-
ters for these calculated functions are yo=¢o=6m=464=0,
e=1, my=3py, rp= 10 fm, and 79=4 fm/c. The longi-
tudinal coalescence was varied over 0 < C,,; <1.8. The
separate curves correspond to pseudo-temperature val-
ues of T'=186.1 (highest curve), 268.4, 384.9, 549.5, and
782.6 (lowest curve) MeV, which correspond to physical
temperatures of U:,u,,Q"/2 with n=0 to 4.

Figure 10 shows the charged 2-, 3-, and 4-particle cor-
relation distributions R,EH as functions of the radial coa-
lescence C, g over a range of values of T, the pseudo-
temperature of the source. The fixed parameters for
these calculated functions are yo=¢g=6m==6¢=0, e=1,
mo=3p,, rp=10 fm, and 79=4 fm/c. The radial co-
alescence was varied over 0 < C,r <1.8. The sepa-
rate curves correspond to pseudo-temperature values of
T=186.1 (highest curve), 268.4, 384.9, 549.5, and 782.6
MeV (lowest curve), which correspond to physical tem-
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FIG. 8. The2, 3, and 4 charged-particle correlation distri-

butions RL:H as functions of the radial coalescence C,r over
a range of values of 7, the emission time constant of the
source. The parameters used are given in the text. The sep-
arate curves correspond to source emission time constants of
70 =1 (highest curve), 2, 4, 8, 16, and 32 (lowest curve) fm/c.
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FIG. 9. The charged 2-, 3-, and 4-particle correlation dis-

tributions RIY as functions of the longitudinal coalescence
Chr1 over a range of values of 7', the pseudo-temperature of
the source. The parameters used are given in the text. The
separate curves correspond to pseudo-temperature values of
T=186.1 (highest curve), 268.4, 384.9, 549.5, and 782.6 (low-
est curve) MeV, which correspond to physical temperatures
of 4.

peratures of U=p,2"/? with n=0 to 4.

It is interesting to note in this comparison that elevat-
ing the temperature, which shifts the pion momentum
spectrum to higher energies, also has the effect of re-
ducing both the longitudinal and the radial correlation
peaks.

VIII. CONCLUSION

We have introduced a new set of Lorentz-invariant
kinematic variables, the longitudinal, transverse, and ra-
dial coalescence, for describing the relative state of a
group of pi mesons that are analyzed with an n-particle
correlation distribution R,,. The value of these variables
has been illustrated in the examples above, it can be
summarized as follows:

The coalescence variables are dimensionless, Lorentz-
invariant, monotonically increasing functions of the more
familiar relative rapidity y, transverse angle ¢, and trans-
verse mass myp of the correlated pions.

The coalescence variables allow direct comparisons
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FIG. 10. The charged 2-, 3-, and 4-particle correlation

distributions RL:H as functions of the radial coalescence Cy,r
over a range of values of 7', the pseudo-temperature of the
The parameters used are given in the text. The
separate curves correspond to pseudo-temperature values of
T=186.1 (highest curve), 268.4, 384.9, 549.5, and 782.6 (low-
est curve) MeV, which correspond to physical temperatures
of U=p2""? with n = 0 to 4.

source.

among the correlation distributions for any number of
pions.

The coalescence variables for a multiparticle system are
formed by adding the corresponding two-particle coales-
cence variables in quadrature for all particle pairs present
in the system.

The coalescence variables provide a Lorentz-invariant
separation of the timelike and spacelike characteristics of
the source of particles.

We have extended the analytic Kolehmainen-Gyulassy
model by including the effects of source coherence and
of Coulomb repulsion between the correlated pions.
For the correlation distributions of order n using the
Kolehmainen-Gyulassy model, the longitudinal coales-
cence C,r has a complementary relation with the source
duration 79, the transverse coalescence C,,7 has a comple-
mentary relation with the source radius r7, and the ra-
dial coalescence C,, g has a complementary relation with
a combination of 79 and rp. The results of this investi-
gation can be summarized as follows:

For source sizes greater than about ry =~ 32 fm, the
two-, three-, and four-particle correlation distributions
peak in a region of coalescence where they are completely
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suppressed by Coulomb repulsion, making correlations of
charged pions in this size domain insensitive to source
size.

It is apparently possible to extract emission time con-
stants with values 79 &~ 32 fm by analyzing the corre-
lation dependence on radial coalescence, provided the
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transverse radius of the source is of moderate size.
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