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We introduce the coalescence variables, a set of three boost-invariant kinematic quantities that
may be used in analyzing n-particle correlations. These variables characterize the invariant mass
of an n-particle system, and in three directions separate the timelike and spacelike characteristics
of the source. The analytic Kolehmanien-Gyulassy model is generalized to give two-, three-, and
four-particle correlation functions, with coherence and Coulomb corrections applied to the basic
formalism. We demonstrate the relation of the coalescence variables to the radius and duration
of the source, and find that for sufficiently large transverse radii, Coulomb efFects can suppress
the structure of the Hanbury-Brown —Twiss correlations so that no significant information on
source size can be obtained.

I. INTRODUCTION

In ultrarelativistic collisions between heavy ions, the
number of like-sign pions produced in a single collision
is expected to be on the order of 10 . Because of this
very large multiplicity, Hanbury-Brown —Twiss correla-
tions between pious may oAer a powerful probe for the
investigation of such collisions on an event-by-event ba-
sis. The numerical factors implicit in multiparticle Bose-
Einstein interferometry imply a strong tendency for pions
to cluster or "coalesce" in the same region of momentum
space due to their mutual Bose-Einstein reinforcement.
Therefore, interferometry using pions clustered in mo-
mentum space may oAer an important analysis tool. In-
deed, it has been suggested that pion "speckle interfer-
ometry, " i.e. , the high-order correlations of pion clusters
or "speckles, " might be used to extract detailed informa-
tion on the size, shape, time duration, and eccentricity
of the source of pion emission.

A fundamental problem encountered in interferometry
using correlations between n particles, where n is larger
than 2, is finding a compact set of independent Lorentz-
invariant kinematic basis variables for presenting and an-
alyzing the correlations. The relative vector momenta of
n particles require 3" independent variables for com-
plete specification. This number of parameters is far too
large and too inter-related for meaningful analysis. For
example, analysis using the relative vector momenta in
the correlation of a five-pion system would require 27 in-
dependent momentum variables.

Goldhabers was able to compare the correlations of
two and three pion systems by plotting both correla-
tion distributions against a variable which he called Q2,
the mean-square deviation of the invariant mass of the
n-pion system from its minimum possible value, i.e.,

Q2 = E"E„(np )z. Liu et—al.~ have employed this
Q2 variable in analyzing two- and three-pion correlations
in Ar + Pb and Ar + KCl heavy ion collisions. For the

purposes of the present discussion, we will refer to Q as
the overall coalescence variable, since it goes to zero when
a system of pions has coalesced to occupy a minimum
volume of momentum space. The use of Q and simi-
lar variables in the analysis of correlations of relativistic
particles has been criticized because, although it is
a Lorentz-invariant quantity, it mixes the timelike and
spacelike characteristics of the source. In central colli-
sions of ultrarelativistic heavy ions the time and space (or
longitudinal and transverse) source characteristics pro-
vide independent information about the collision, and it
is important to keep these separated in the analysis of
multiparticle correlations.

The invariant mass of a two-pion system can exceed the
minimum value of 2 p~ only if the two pions have nonzero
relative momentum. Consider the distribution of emit-
ted pions in a spherical coordinate system (r, 0, P) where
the beam direction is the z or longitudinal axis defined
by 0 = vr/2 and the locus 0 = 0 is the transverse (equato-
rial) plane. Thus, 0 has the range —x/2 ( 0 ( x/2. The
relative momentum between a pair of emitted pions can
have longitudinal (0), transverse (P), and radial (r) com-
ponents. In the context of Hanbury-Brown —Twiss corre-
lations, these three momentum diAerences sample sepa-
rate geometrical aspects of the pion source and should, if
possible, be investigated separately. In what follows, we

propose a decomposition of the Goldhaber coalescence
variable into longitudinal, transverse, and radial coales-
cence components, thereby preserving this distinction.
We then apply this analysis technique to a comparison of
two-, three-, and four-pion systems using a generalization
of the analytic model of Ikolehmainen and Gyulassy. '

II. COALESCENCE
IN THE 2-PARTICLE SYSTEM

Vr'e will use the following notation. The rest mass of
the ith particle is p, i.e. , the pion mass. Its total en-
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ergy is m;, its vector momentum is P;, its transverse mo-
mentum is p, , its transverse mass is m, = gp, + p, its
longitudinal momentum is q, = glo; —m;, its azimuthal
angle in the transverse plane is P;, its polar angle forward
or backward of the transverse plane is 0;, and its rapidity
is y; =

2 in[(lo, + q, )/(lo, —q, )] —ln[(1+ sin 0, )/ cos0, ].
We will also employ the useful rapidity relations m,

m; cosh(y, ) and q, = m; sinh(y, ). We will take c = 1

and express all of the above quantities except angle and
rapidity in energy units, usually MeV.

For a two-particle system, the Goldhaber coalescence
variable is given by

Q' = (~1 + ~2)' —(Pl+»)' —(2l -)':(apl + 1O2) —(Pl COS $1 + P2 COS $2)
—(pl sin pl + p2 sin $2) —(ql + q2) —(2p )

III. COALESCENCE
IN THE n-PARTICLE SYSTEM

("
Q'„= i) (").P'

' ).l'
k'=1 ) k =1 )

(6)

which with suitable manipulation becomes

n

Q„= ) m;mi 1+ 2sinh

—) p p, 1 —2sin
i

—) p . (7)
gj

Now let us consider the case of n correlated particles,
where n)2. The n-particle coalescence is given by

(1) Thus, using definitions (3), (4), and (5),

With suitable algebraic manipulation, this can be re-
duced to the following form:

Q2 ——2 mlm2 1+ 2sinh 2 (yi —y2

2

n

Q„' = 2p' ) [C2r (i,j ) + C,'T (i,j ) + C2~(i, j)]
i(j

= 2s '. (C.'i + C.'T + C.'a)
where

—pl p2 1 —2 Sill
i

—li
2 ) (2) C„~ = ) C2~(i,j) with X = I, T, or R.

i(j
We make the following definitions of dimensionless co-

alescence variables:

C21.(1, 2) = 1 yl y2'1/2m 1 m2 Slllli
px

=1C2T(1, 2) = /2plp2 sin
px 2

(4)

C2a(1, 2) = 1
'/ml m2 P1P2 P~

Per

1
Q[(pi —p2)' —(ml —m2) ]/2

P7t.

g[(mi + m2)2 —(pl + p2)' —(2p )2]/2 .
P7t-

Here C21. is the two-particle longitudinal coalescence, C2T
is the two-particle transverse coalescence, and C~~ is the
two-particle radial coalescence. They are dimensionless
variables that specify the invariant mass deviation rela-
tive to p„, the pion mass.

Note that C21,——0 when yl
——y2, that C22 —0 when

$1——$2, and that C2~——0 when either ml ——m2 or pl ——p2
(since each equality implies the other). The overall two
particle coalescence Q2 is given by the relat, ion Q2
2p (C2~ + C2T + C2~), i.e. , the three coalescence com-
ponents add in quadrature, as would be expected of or-
thogonal coordinates.

These generalized coalescence variables can be calcu-
lated for a system composed of any number of pions,
given the momentum components of each particle of the
system. The coalescence variables for all particle num-
bers have the same significance, denoting the amount by
which the momentum mismatch along a particular axis
increases the invariant mass of the system, in units of
p . Thus, as we will see, coalescence variables can be
useful in comparing n-particle correlations over a range
of values of n.

For the purposes of the comparisons presented in this
paper we will use a simple linear parametrization of the
momentum variables in terms of the kinematic -param-
eters yp, by, mp, bm, Pp, and 6$, the central value
and diAerence of the rapidity, transverse mass, and az-
imuthal angle, respectively. For the two-particle case,
we will take yi ——yp + by, y2

——yp —by, mi ——mp + bm,
m2 ——mp —bm, pl ——pp + bp, and $2 pp —bp. Thu—s
mo ——(ml + m2)/2 and bm=(ml —m2)/2, etc. For the
three-particle case, we will take yi ——yp + by', y2 ——yp,
y3

——yp —by, my —mp + bm', m2 —mp, m3 —mp —bm',

41 ——go+be', $2 po, and $3 po ———bp', where 6—y'=0. 86by,
6m'=0. 866m, and 6$'=0.866$. For the four-particle case,
we will t»e yl —yo+by y2 —yo+by'/3, y3 yo by /3
y4 —yp —by, ml —mp+ bm, m2 —mp+ bm /3, m3 mo——
6m"/3, m4 ——mo —bm", $1 Po + 6$", $2 Po ——+ 6$"/3, ——
Q3 —go —bp" /3, and p4 pp —bp", where b——y"=0.72by,
6m"=0.726m, and bg"=0.726$.

Reduction factors have been applied to the n = 3 and
n = 4 difference parameters above to give the correspond-
ing coalescence variables about the same dependence as
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FIG. 1. The coalescence variables C„L,, C„T, and C„~ for
n = 2 (solid curves), n = 3 (dashed curves), and n = 4 (dot-
dashed curves) are plotted against the kinematic difference
parameters by, bP, and b'm for yp=gp=O, and mp=3p,

IV. APPLICATION TO 2, 3,
AND 4-PARTICLE CORRELATIONS

Up to now, investigations of the correlations of pions
produced in ultrarelativistic heavy ion collisions have fo-
cused on two particle systems, with a few studies of
three-particle correlations. However, we expect that with
the higher multiplicities expected collisions at RHIC and
LHC energies, correlations with larger numbers of pions
(and kaons) will play a prominent role in the analysis.
Here we will use the coalescence variables to compare
the correlations of two to four pions.

We are particularly interested in the competition be-
tween the rising strength due to Bose-Einstein attrac-

t, he n = 2 coalescence variables. Figure 1 shows plots
of the coalescence variables C„l., C„T, and C„~ plot-
ted against the difference parameters by, bP, and bm for
yp —Po —0, n = 2, 3, and 4, and mp —3p, . We see that
all three coalescence variables are single valued mono-
tonically increasing functions of by, bg, and bm and that
C2~, C3~, and C4~ (X = L, T, and R) have similar
behavior and normalizations.

d N = AI~p(mi/T),
d3P1

where A is a normalization factor and Its(z) is a modified
irregular cylindrical Bessel function of order zero with
possibly complex argument z. We will also consider the
n-particle correlation distributions, here defined as the
ratio of the n-particle inclusive pion yield to the product,
of n one-particle inclusive pion yields, i.e. ,

d3" N ---- d3N
dsP . . d P„.- - d P;i=1

The two-particle correlation distribution for neutral par-
ticles (superscript [0]), in the Kolehmainen-Gyulassy
model, is given by

(12)

R2 (Pi, Pp) = 1+B,2,
where

IG(P» P~) I

/G(Pi, P i)G(P2, Pg)
(14)

tion exhibited by the general n-particle correlation R„,
which for neutral particles has a maximum value of n.'
when the overall coalescence Q2 = 0, and the strong
suppression of the charged pion correlation R due
to Coulomb repulsion, which behaves approximately as
F(il „s)"&" &~ due to the mutual repulsion of charged
pions that are closely correlated. Here I" is the Gamow
penetrability and g the average Sommerfeld parameter,
both defined below, which characterize the Coulomb in-
teractions of the system. This competition ultimately
depends on formidable and unresolved theoretical issues,
particularly the derivation of a reliable expression for
multiparticle Coulomb efkcts. In the present work the
Bose-Einstein/Coulomb competition will be investigated
through the use of an analytic model for the correlations
and a simple but plausible Coulomb correction proce-
dure.

Ikolehmainen and Gyulassy ' have presented a boost-
invariant analytic model for predicting the one- and two-
particle correlations of pions from an ultrarelativistic
heavy ion collision. The model is able to obtain an an-
alytic expression for the correlation distribution by em-

ploying a simple pseudothermal description of the pion
momentum distribution function. It uses the inside-
outside cascade model to describe the pion emission pro-
cess and assumes that the emissions are completely in-
coherent. It characterizes the pion-emitting volume with
three parameters, the transverse radius rT of the emit-
ting volume, and the time constant To of the emission
process, and the pseudo-temperature T of the source.
The pseudo-temperature of the Kolehmainen and Gyu-
lassy model is related to the physical temperature V of a
thermal model by the relation T = 1.42U —12.7 MeV. In
the calculations below, we will usually take U=p, which
is equivalent to T=186.1 MeV.

The one-particle inclusive pion yield given by this
model is
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and

PT 2

G(P 1, P 2) = AIM 0 (Qu12) exp —Apl 2 2h

with

lp12 —pl + p2 —2plp2 cos(4'1 4'2)

2
'lTL1 + m2 'LYO

u12 —— + (ml —m2)2T
2

r0 yi —y2+ 4
2T) h

+ ml m2 sulh
2

In terms of the coalescence variables we can write (16)
and (17) as

Kp, 2 = {ml + m2) + 2p (C22~ + C22T),

and
"2

PTER] + m2 L7Ou„= + (ml —m2)

+2 + p~

Note that u12 is a complex quantity that becomes purely
real when (ml —m2)=0. The quantity (ml —m2) in

I

Eq. (19) is closely related to the radial coalescence C2&,
but no simple function of the latter can be used in the
equation.

In the present work we have generalized the
Kolehmainen-Gyulassy model summarized in Eqs. (11)—
(19) in several ways. First, following the work of Biya-
jima ef a/. , we have used quantum optics (QO) interfer-
ence diagrams to derive the two-, three-, and four-particle
correlation distributions for neutral particles in terms of
the Kolehmainen-Gyulassy model with the addition of
coherence. The Biyajima formalism includes the possi-
bility of a coherent contribution to particle emission, but
implicitly assumes that there is only one source of co-
herent emission. The two-particle correlation function,
calculated in this way, is a generalization of Eq. (13) and
has the following form:

R,"(Pl, .)= +" »+ ( —)» (o)
Here the parameter c specifies the fraction of the net
emission of the source that is incoherent and is defined
as e=m;„, h/(m;„, h+ m, h), where m is the pion mul-

tiplicity of type x. When coherent emission of pions is
significant, e ( 1 and this has the eA'ect of reducing the
peaking near Q =0 of the correlation distributions. In
the calculated examples presented later in this paper we

will assume that the pion source is completely incoherent,
I.e. , 6:1.

The three neutral particle correlation derived from QO
dlagl'al1IS IS

R3 (P11P2) P3) = 1 +t (812 + 823 + 831) + 2e (812823831)Io]

+2e(1 —E')(812 + 823 + 831) + 2e (1 —e)(812823 + 813832 + 821813)

and the four neutral particle correlation is

t:o]R4 (»P»P» 4) + ( 12+813+ 14+ 23+ 24+ 34)
+ 2e (812823831 + 812824841 + 813834841 + 823834842)
+ 2& (812823834841 + 812824843831 + 813832824841)
+e (812834 + 813824 + 814823) + 2e(l —e)(812 + 813 + 814 + 823 + 824 + 834)
+ 3& (1 &)(812823 + 812824 + 813834 + 823834 + 812831 + 812841 + 813841 + 823842)
+ 4e (1 —e) (812834 + 813824 + 814823)
+ 2& (1 &)(812823834 + 812824843 + 813832824 + 812823841 + 812824831 + 813832841

+ +12@34+41+ L 12+43@31+ +13@24@41

+ 823834841 + 824843831 + 832824841)
+ 2e (1 —e)(812834 + 813824 + 8148&3 + 812834 + 813824 + 814823).

Note that for completely incoherent systems, the (1—
e) terms in the above relations will vanish, resulting in
considerable simplification of the equations.

As a second generalization of the Kolehmainen-
Gyulassy model, we have included an approximate
correction for the mutual Coulomb repulsion of the
emitted identical particles. This allows us to obtain
R„(P1,. . . , P„), the n-particle correlation distributions
for charged particles (superscript [6]). Following Gyu-

I

lassyet a/. , we have used for two charged-particle cor-
relations a Coulomb correction of the following form:

(Pl ) P2) —+(912)R2 (Pl & P2) (23)

where F(@12) is the Gamow penetrability function
2~r112/[exp(2vrg12) —1] and rj12 is the Sommerfeld pararn-
eter n/P12. Here n is the fine structure constant and $12
is the velocity of particle 1 relative to particle 2 divided
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by the velocity of light. For the case of pions with kinetic
energies comparable to p, the quantity 2xg in the pen-
etrability function is typically much less than 1, which
implies that an expansion of the Coulomb correction in

powers of 2+@ should converge rapidly. As a correction
for final-state-interaction effects, the use of the Gamow
penetrability is a valid approximation only when non-
Coulomb final-state interactions can be neglected and
when the Bohr radius of the system of two charged parti-
cles is large compared to the dimensions of the emission
source. For pions, the two-particle-distance scale implied
by the Bohr radius is about 193 fm, a large distance com-
pared to expected source sizes of 4 to 40 fm.

I iu et a/. , have suggested an a d h oc product-form
Coulomb correction for a system of three charged par-
ticles of the form [F(il12)F(@23)F(@31)].Here F(rh&) is
the Gamow penetrability, and il;~ the Sommerfeld pa;
rameter describing the Coulomb interaction of particles i
and j. We can provide some justification for a correction
of this form by considering the following gedanken exper-
iment: I,et us "assemble" an n-pion system by bringing
the pions one at a time from infinite relative momentum
down to the momentum state appropriate to the g value
of the new pion with respect to the already assembled
pions. In this case the net penetrability of the assem-
bled system, and therefore the suppression of the correla-
tion, will be of the form [F(rl)F(2g)F(3g) F((n —1)il)],
where il is some average Somrnerfeld parameter of the
various pion pairs. For two charged pions, this is just
the Coulomb correction given in Eq. (23). For three
charged pions, this leads to a Coulomb correction of the
form [F(g)F(211)].To order rI2, this can be approximated
by [F(il)], essentially the correction suggested by Liu ef
a/. However, a better approximation that is valid to or-
der g can be obtained by introducing g', the n = 3
effective Sommerfeld parameter, which is defined by the
relation F(rl)F(2tl)/[F(il')] = 1 + D(il ). We use the
series expansion

where z = 7rrj and z" = arrl". The Coulomb correction
can then be symmetrized in the particle indices to give a
correction valid to order q of the following form:

[F(912)F(913)F(914)F(923)F(924)F( j34)) &

where g," is the n = 4 effective Sommerfeld parameter
defined above. The four-particle correlation for charged
particles is then

R4 (Pi, P2, P3, P4)

[F(912)F( ll'3) F(11'4)F(123)F(124)F(&34)]

x R4 (P1, P2, Ps, P4) . (25)

The Coulomb corrections of Eqs. (24) and (25) are based
on a somewhat schematic conceptual model, the use of
which is justified only because a more accurate multi-
particle Coulomb correction is not available. We note,
however, that both of these Coulomb corrections exhibit
an important and required property: When one of n cor-
related particles x is made electrically neutral or given a

I I I I

I

I I I I

I

I I I I

I

I I I I

10.0

by the relation F(g)F(2il)F(3')/[F(il")] = 1+ O(il ).
We use the series expansion

2 3 167 4 1 5 18 091 6+ 9 27 2430 + 30 + 459 270

1 2 1 3 19 4 11 5 967 6+ 9 27 1215 + 1215 229 635

where z = m g and z' = vr g'. The Coulomb correc-
tion can then be symmetrized in the particle indices
to give a correction valid to order g that has the
form [F(1112)F(@23)F(@31)].The three-particle correla-
tion function for charged particles is then

5.0

R3 (P1 P2 P3) 10

= [F(rl' )F(il' )F(ib, )]Rl l(P, P, P ), (24)

where g,' is the n = 3 effective Sommerfeld parameter
defined above.

This conceptual approach to Coulomb corrections can
be extended to a system of four charged particles, where
it has the form F(rl)F(2g)F(3g). To order g, this can
be approximated by [F(rl)]s, but a better approximation
valid to order g can be obtained by introducing g", the
n = 4 effective Sommerfeld parameter, which is defined

0 5 I I I I I I I I I I I I I I I I I I I

0 1 8 3 4

FIG. 2. Comparison of two-, three-, and four-particle cor-
relation distributions for neutral particles R„(dashed curves)
and for charged particles 8„+ (solid curves) as functions of
the longitudinal coalescence t L, . The parameters used are
given in the text.
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large relative velocity [so that all of its penetrability fac-
tors I" (g, ) ~ 1], the Coulomb correction reduces to that
appropriate to the next lowest order correlation, i.e. , the
correction for n —1 particles.

Figure 2 shows a comparison of neutral and charged
two-, three, and four-particle correlation distributions

as functions of the longitudinal coalescence. The
fixed parameters for this plot are yo ——gp ——bm=b$=0,
6=1, mp —3p, , pT= 1.0 fm, 7o ——2.0 fm/c, and T = 185.5
MeV. The longitudinal coalescence was varied over 0 &

C„L, ( 4. The dashed lines show the neutral-particle
correlation and the solid lines show the charged-particle
correlations. The eAect of the Coulomb force in suppress-
ing the correlation at small relative momenta is apparent
in these curves, as is the greater enhancement over uncor-
related background (S„=l) of the n-particle correlation
distribution.

Figure 3 shows a comparison of neutral and charged
two-, three-, and four-par ticle correlation distribu-
tions R„' as functions of the transverse coales-
cence. The Axed parameters for these calculated func-
tions are yo ——by=go —bm:0, e:1, mo —3p, iT:1.0 fiI1,
re=2. 0 fm/c, and T = 185.5 MeV. The transverse coa-
lescence was varied over 0 & C„T & 4.

Figure 4 shows a similar comparison of neutral and
charged two-, three-, and four-particle correlation dis-

tributions RIi ' as functions of the radial coales-
cence. The fixed parameters for these calculated func-

tions are yo b——y=go b——/=0, c=l, mo —3p, rT=1.0 fm,
i.o —2.0 fm/c, and T = 185.5 MeV. The radial coalescence
was varied over 0 & C„~ & 1.4.

V. DEP ENDENCE
ON TRANSVERSE RADIUS R~

Equations (15) and (18) imply that the function
G(Pi, P2) has a term that is a Gaussian exponential with
an exponent of the form —2[(p /h)rTC27] and a simi-
lar term involving C2~. This means that the transverse
has a complementary relationship with both C„T and
C„~, i.e. , the widths of the correlation peaks in these co-
alescence variables depend on 1/rT. This dependence is
illustrated in Figs. 5 and 6, in which the transverse radius
is varied to show its eAect in the transverse and radial
correlation peaks. The longitudinal correlations are not
shown because the longitudinal correlation peak widths
are independent of rT.

Figure 5 shows the charged 2-, 3-, and 4-particle corre-
lation distributions R„as functions of the transverse co-
alescence C„T over a range of values of r~, the transverse
radius of the source. The fixed parameters for these cal-
culated functions are yo=Pp —bm=by=0, a=1, mo —3p~,
~o ——4 fm/c, and T = 185.5 MeV. The transverse coales-
cence was varied over 0 ( C„z &1.8. The separate curves
correspond to transverse radius value of rT ——1 (highest
curve), 2, 4, 8, 16, and 32 fm (lowest curve).

I I I I I I I I I I I I I I I I I I I

10.0 10.0

5.0 5.0

1.0 10

0.5
0

I I I I I I I I I I I I I I I I

1 2 3 4
0 5 I I I I I I I I I I I I I I I I I I I

0 0.25 0.5 0.75 1

R(P)
I'IG. 3. Comparison of two-, three-, and four-particle cor-

relation distributions for neutral particles R„(dashed curves)
and for charged particles RI„+i (solid curves) as functions of the
transverse coalescence C z . The parameters used are given
in the text.

FIG. 4. Comparison of two-, three-, and four-particle cor-
relation distributions for neutral particles R~„i (dashed curves)
and for charged particles R„(solid curves) as functions of
the radial coalescence t ~. The parameters used are given in
the text.
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suppressed by Coulomb repulsion, making correlations of
charged pions in this size domain insensitive to source
size.

It is apparently possible to extract emission time con-
stants with values 7O 32 fm by analyzing the corre-
lation dependence on radial coalescence, provided the

transverse radius of the source is of moderate size.
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