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A FORTAN II computer program for the calculation of particle
trajectories through inclined-field or straight accelerating tubes
of the type commonly used in Tandem Van de Graaff accelerators

Accelerator tubes are one of the most expensive and
vulnerable parts of a tandem accelerator. In an ac-
celerator using ‘“‘straight’ tubes, i.c., tubes with elec-
trode surface perpendicular to the direction of accelera-
tion, a faulty acceleration gap can be shorted out without
greatly impairing the operation of the accelerator.
However, with the introduction of inclined-field tubes')
by High Voltage Engineering Corporation, the shorting
of a single accelerator gap can radically alter the tra-
jectory of particles through the accelerator and serious-
ly damage the performance of the machine. Moreover,
many considerations of accelerator development and
improvement require some detailed information on the
optics of the accelerator. Such information is not, un-
fortunately, provided by the manufacturer. For these
reasons, an elementary computer program has been
written in FORTRAN I for the computation of particle
trajectories through inclined (or straight) acceleration
tubes, as well as other optical elements in an accelerator
system.

In the writing of this program, it was first necessary
to derive the transfer equations which apply to electro-
static inclined-field accelerating tubes. This was ac-
complished by considering the non-relativistic equations
for a non-inclined acceleration gap, and then per-
forming a rotation of the coordinate system from the
field axis to the tube axis. The transfer equations given
below are the result of this derivation.

The equations for the position and inclination (x,%;)
of a single charged particle emerging from an ac-
celerating gap, in terms of the entrance position and in-
clination (x4,%,), the potentials ¥, and ¥, of the en-
trance and exit acceleration electrodes, the length L of
the gap, and the inclination angle 8 of the electric field
in the accelerating gap, are:

Xy = Xxo+L[{2%5/(1 + R)} +tangf],

%, = (Xgcos8+ Rsinf)/(Rcos0—x4sind),
where

is described. Details of the program and results of tube optics
calculations are discussed.

%o = (%ocos@—sinh)/(x,sinf+cosf) =

= particle inclination with respect to field,

R =(V/Vo) .

Here we have used the convention that all potentials are
referred to a zero potential at which the charged particle
has zero velocity. Thus R above represents the ratio of
exit to entrance velocity. Unfortunately, these equations
are non-linear, so that the usual matrix methods?) can
not be used. This non-linearity does not present any
serious problems in the calculation, as examination of
the program will show.

Several approximations were used in preparing the
computer program, and they are enumerated here. The
first was the assumption of non-relativistic kinematics.
The principal justification for this assumption is that
the uncertainties in tube and resistor construction
introduce errors of such a magnitude that the refine-
ment of relativistic mechanics is not warranted. A
second assumption was that all magnetic fields due to
electron-suppression magnets, etc., could be neglected.
A third assumption was that the particle in passing
through each acceleration gap covers a distance along
the tube axis equal to the axial gap width. This is not
quite true because inclined field gaps have slanting
boundaries, so that if a particle enters low and exits
high it may traverse more (or less) than one gap width
between boundaries. However, errors due to this
assumption will tend to average out. A fourth assump-
tion is that of the aperture lens formula given by
eq. (5-20) of Livingston and Blewett?). This formula is
applied to describe the lens action which occurs when a
particle passes from one gap to another and the two
gaps have different electric fields. Finally, a gap which
is a transition element between a straight section and an
inclined field section is treated as having half the incli-
nation of the inclined field section.

* Work was supported in part by the U.S. Atomic Energy
Commission.
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Fig. 1. A compilation listing of the FORTRAN II program is
shown. (Equal marks and sequential numbers are generated by
the compiler and are not a part of the card format.)

J. G. CRAMER

Fig. 1 shows a compilation listing of the FORTRAN
program, as compiled on the SDS 930 on-line computer
system of this laboratory. The program is written in
standard FORTRAN 1I and should run on any com-
puter, except for one incompatibility. The subroutine
HIPLOT called by this program is a plotting routine
which uses the special high-density plotting symbols
present on our line printer. In adapting the program to
another computer, another plotting routine (or dummy
subroutine) should be substituted.

Fig. 2 shows a typical particle trajectory through the
University of Washington FN tandem accelerator, as
calculated by this program. The beam is injected at
60 keV along the tube axis, and the accelerator has a
terminal potential of 5.46 MV, so that the energy of the
emerging particles is 10.98 MeV. Both the position and
the angle of the beam are plotted. It is interesting to
note that although the beam is injected on-axis, it
emerges parallel and 2 mm above the tube axis.

Many exploratory calculations have been made with
this code, studying such things as the effect of resistor
variations on accelerator optics, the effect produced by
shorting inclined field sections and methods of com-
pensation, and the possible improvements in accelera-
tor optics produced by terminal steering and focusing®).
However, since these calculations are directly applicable
only to our accelerator, they will not be discussed
here.

One rather interesting result of such calculations is
perhaps worth mentioning; in tracing rays backward
from the stripper to the low energy end of the machine,
it was discovered that a real image of the stripper is
formed by these rays. If the beam entering the ac-
celerator passes through this stripper-image, it will pass
through the stripper itself and presumably through the
whole accelerator, provided it does not collide with an
accelerating electrode or alter its trajectory by small-
angle scattering with residual gas in the tube. Fig. 3
shows this stripper-image for a terminal potential of
5.46 MeV and 60 keV injected protons. The position of
the stripper-image depends, of course, on the terminal
potential of the accelerator, and the injection energy of
the accelerated particles, but the image position shown
in fig. 3 is fairly typical and provides a clear idea of the
requirements on the ion-source optics to achieve maxi-
mum transmission through the accelerator.

The author wishes to thank Prof. F. H. Schmidt and
Mr. J. S. Heagney for helpful discussions while this
work was in progress, and to acknowledge helpful
correspondence with Dr. J. D. Larson of Brookhaven
National Laboratory, who has been making similar
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Fig. 2. Typical particle trajectory through the University of Washington FN tandem accelerator, as caleulated by the program
described here. Beam is injected on-axis at 60 keV. The terminal potential is 5.46 MV.
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