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PROGRAM SUMMARY

Title of program: DS
Catalogue number: ABOR

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N.Ireland (see application form in this issue)

Computer: 1BM 360/91. Installation: Princeton University
Operating system: 08360
Programming languages used: FORTRAN IV

High speed store required: 947 words. No of bits in a word. 64

Is the program overlaid? No

No. of magnetic tapes required: None

What other peripherals are used? Card Reader; Line Printer
No. of cards in combined program and test deck: 112

Card punching code: EBCDIC

Keywords: Atomic, Molecular, Nuclear, Rotation Matrix, Rotation Group, Representation, Euler Angle, Symmetry, Helicity,

Correlation.

Nature of the physical problem

Subprogram DS is a FORTRAN IV DOUBLE PRECISION
FUNCTION which calculates the reduced matrix elements of
finite rotations [1] in the angular momentum representation,
using a standard phase convention [2]. The four arguments of
the FUNCTION are: J2, twice the total angular momentum;
MI2 and MF2, twice the z-projection of the total angular mo-
mentum in the initial and final coordinate systems, respective-
ly and BETA, the Euler angle-of-rotation around y' [2}.

Method of solution X

A Wigner-closed-sum expression for d’;nm () is evaluated.
Each term contains products of factorials. Using a method
similar to that of Wills [3], a common coefficient {containing

* Supported in part by the US Atomic Energy Commission.

factorials) is evaluated by combining the logarithms of the
factorials, followed by one exponentiation. The remaining ex-
pression is written, without factorials, as a nested product.
This method contrasts well, in speed and accuracy, with meth-
ods that evaluate factorial products in the closed-sum coeffi-
cients term-by-term, before adding.
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LONG WRITE-UP
1. Introduction

The elements of the matrix associated with the rotation operator R{(«,8,y) = exp (—ia/z) exp (—if/y) exp (—iW/z)
are evaluated in the angular momentum representation where they are exp (—ima) d{;nmr(ﬁ) exp (—im'y). These
matrix elements are complex, with the real matrix d},,,,, () being the only difficult part to evaluate.

The rotation matrix has enjoyed wide use for many problems of interest in quantum mechanics. Although it
has been widely used in a formal way, its numerical evaluation is needed if it is to be applied to experimental prob-
lems in atomic and nuclear physics. Examples of this application occur in the use of direct reaction scattering the-
ory to predict the angular correlations between two or more radiations [1], and in the expansion of nuclear reac-
tion cross sections in helicity amplitudes [2].

2. Code description

The code being reported is a FORTRAN IV FUNCTION SUBPROGRAM called DS. This subprogram calcu-
lates values for the reduced rotation matrix [3] corresponding to an Euler angle-of-rotation of § around the y'axis
[4] for both integer and half-integer spins. The method of calculation is to modify and evaluate the following
Wigner closed-form expression [3].

: _[G+m') 1= 2 (J'+m )(f—m) ' —ap L dat e L 20—’ —m
dfmm.(ﬁ)—‘“-f._ e Za} iim o)\ o )T o 38) (sin 38)7 ;

where(g = NY/(N—K)'K! is the binomial coefficient. ,

A common factor is extracted from the above form and the phase is modified by (— 1) = to follow the
Brink and Satchler convention [4]. This results in the following numerically-convenient expression for the reduced
rotation matrix:

&)= (1) 3L sK9(K;!K,;!_.KK3!K“!)U2 {1 @ (K=K ) (14K, K )

y [1 *0_2 (Q+K—K) (24K, —K() {1 B C_29+_K6—KU) (3+K,—K ) [ B
52 (K5+KU—1)(KL+KU—1) 52 (K5+KU~2) (K tKy—2) ’

where Ky =j—m',K3=j—m, K; =maximum of (0,m—m"),Ks=m'+m+K,K;=K3— K[ ,K,=j+m',K,=j+m,
Ky =minimum of (KI,K3), K=K —K[,Kg=Ks+K|,Kq=K; +K, —Kg, C=cos%ﬁ and S=sin~%6.

The factorial terms in the coefficient of the nested product above are evaluated by combining the logarithms
of the factorials and exponentiating [5]. This expression is:

e.xp {3 [In (KD +1In (Ky1)+1n (K31 +1n (Kg )] — [In (K1) +In (Kg!) +1In (K,) +1n (K D]}

where the logarithms of the factorials are provided in a lookup table for arguments from O to 150 and approxi-
mated by a 5-term Stirling’s formula [6] for arguments exceeding 150.

For the special case of rotations through nm (where n =0, + 1, £ 2, +3 . ) the reduced rotation matrix is ei-
ther zero or equal to the coefficient of the nested product provided that the term is included where the power of
sin 38 or ( cos 3f) is zero when sin 38 or ( cos 1) is zero. These rotations are given special attention in the pro-
gram, thus ensuring that all the end point roots of dfmm(ﬁ) are properly accounted for [7, 8].
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3. Test deck and test run

The test program evaluates the reduced rotation matrix for several argument values where it is approximately
zero [7, 8].
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TEST RUN OUTPUT

DS (3,1,1, 70.529)=-0.000004
DS {4,0.0 . ==0.0

DS (5,0,0,106.852)= 0,0
DS {5,3,1, 78.463)=-0.000001
DS {5,3.3, 53.130)= 0.000003

DS {6,2,0,116.565)= 0.000002
DS (6,2,2, 40.977)= 0.000007
DS (6,2,2, 95.066)=-0.000001




