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A method has been devised for the correction of distortion
effects arising from finite detector resolution in the measurement
of continuous beta spectra. The correction procedure can, in
principle, be used to correct distortions of any continuous spec-
trum measured with any spectrometer having a line-shape of fair
resolution which can be measured or calculated. The method was
applied to beta spectra measured with a 4 scintillation spectro-
meter. Internal conversion lines were used to determine the basic

1. Introduction

A recurring problem in nuclear spectroscopy has been
the correction in measured distributions for distortion
effects arising from finite detector resolution. Since there
is no exact general solution to the resolution equation
(see eq. (2)) which describes the resolution distortion
process, various approximate methods have been pro-
posed for dealing with the problem. When the corrected
distribution is composed of discrete spikes, the techni-
ques of spectrum stripping and least-squares fitting of
line-shape distributions'*?) have had considerable
success. Unfortunately, neither of these methods is par-
ticularly successful when applied to continuous spectra.
For correction of continuous spectra other methods have
been proposed® ™ *) which lead to approximate solutions
of the integral resolution equation (2). They include
Taylor-series expansion of the resolution equation,
which leads to the derivative correction rule?®); matrix
equation approximation of the resolution equation for
which a solution can be obtained by matrix inversion®);
and direct iterative solution of the resolution equation
by numerical methods®). While each of these methods
has some merit, none has been truly satisfactory for cor-
recting continuous spectra.

Various causes may be cited for failure of these
methods to yield a satisfactory approximate solution of
eq. (2). The derivative rule®) requires a detailed know-
ledge of the second derivative of the measured distribu-
tion and employs approximations that are only valid in
regions of the distribution where the distortion is small.
in particular, this type of correction breaks down when
applied to seriously distorted portions of the distribu-
tion, e.g., the *“‘tail” of a continuous distribution. The
other techniques mentioned, matrix inversion*) and

* This work supported by the Office of Naval Research and the
National Science Foundation.

line-shape of the instrument, which was found to be Gaussian to
a very good approximation. The beta spectra of two elements,
TI204 and Y91, which have unigue forbidden shapes were measured
and corrected assuming the basic line-shape to be Gaussian. The
correction procedure yields results compatible with the Fermi
theory, and the experimental shape factor plots for these con-
tinuous beta ray spectra are in very good agreement with
theoretical unigue shape factors.

iterative numerical solution®), both suffer from a com-
mon fault. When either method is applied to a conti-
nuous distribution having a mesh or distance between
points which is small compared to the resolution-width
of the characteristic line-shape (the response to mono-
energetic electrons), any small statistical fluctuations in
the measured distribution will be blown up in the cor-
rected distribution into large, wildly fluctuating high
frequency variations. This effect can be understood by
recalling that the finite resolution of the detector will
smooth the observed distribution by averaging over any
fluctuations which are rapid compared to the resolution
width. Thus a rapid variation in the smoothed distribu-
tion would correspond to a very large variation indeed in
the original unsmoothed distribution. Otherwise it
would have been averaged out altogether. Since the
correction process effectively reverses this smoothing
and, since it does not distinguish between true and sta-
tistical fluctuations, the slightest statistical fluctuation
will be magnified out of all proportion in the corrected
distribution.

The correction technique which is presented in this
paper makes use of the iterative solution technique, but
avoids the magnification of statistical fluctuations by
performing the correction on an nth-order polynomial
which is fitted to the experimental data. The deviations
of the corrected polynomial from the original polyno-
mial fit are used to correct the experimental data in a

1y R. L. Heath, IRE Trans. Nucl. Sci. NS-9 (1962) 294.
2) P. McWilliams, W. S. Hall and H. E. Wegner, Rev. Sci. Instr.
33 (1962) 70.
3) G. E. Owen and H. Primakoff, Phys. Rev. 74 (1948) 1406.
4y J. H. Hubbell and N. E. Scofield, IRE Trans. Nucl. Sci. NS-5
(1958) 156,
W. R. Burrus, Bull. Am. Phys. Soc. 7 (1962) 9.
5) K. Linden and N. Starfelt, Arkiv Fysik 7 (1954) 427,
L. B. Gardner, IRE Trans. Nucl. Sci. NS-7 (1960) 36.
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way which will be described below. In this way the mag-
nification of statistical fluctuations is avoided without
loss of resolution in the corrected distribution. The
technique of iterative numerical solution has been used
in preference to matrix inversion because it allows the
restriction of the solution to a positive definite function
and avoids the round-off error problems to which the
latter method is subject.

2. Discussion of Technique

The correction procedure which will be described is
generally applicable, but it was developed specifically for
application to pulse-height distributions which were
measured with a 47 beta scintillation spectrometer®). In
any correction of this type an accurate knowledge of the
line-shape of the instrument is required over the energy
range of interest. It is well established”" ®) that in organic
scintiliators at energies below about 3 MeV, negative
beta rays have linear response and a very nearly Gaussian
line-shape, the half-width of which varies inversely as
the square-root of the energy. This was verified in the
present investigation by a study of monoenergetic inter-
nal conversion electrons from Sn''?, Am'#', Eu'®?,
Cs'37 and Bi?°". The sources had about the same in-
tensity and thickness as those used in the continuous
spectrum measurements in order that anomolous in-
strumental distortion of the data would be avoided.

The line-shape of the instrument can be written as

G(E,E') = (RkE) * exp —(E'—E)/kE, (1)

where E’ is the energy of the incident beta particle and £
is the pulse-height expressed in energy units. This func-
tion is normalized to have unit area, which corresponds
to a probability of one that an incident beta will produce
some pulse-height in the spectrometer. An experimen-
tally observed spectrum, Q(E), will be related to the true
spectrum, P(E"), by the resolution equation

Ermax
Q(E)zf G(E,E")P(E') dE’ . (2)
0

This equation must be solved for P(£") to give the desired
correction, and to do this an iterative numerical techni-
que is used. Each iteration generates an approximate
solution P"(E’), where n is the iteration number. This
approximate solution is obtained from that of the
preceeding iteration by the relation

P, (E) =P""Y(E)
. Emax
+ x lQ(E) - f P YEYG(E,E) dE'] (3)
0

D. E. WORTMAN AND J. G. CRAMER JR,

where o is a convergence constant between one and zero.
For the Oth approximation, i.e., the initial estimate of P,
we will use P°(E)= Q(E). The iteration is continued
until some arbitrary degree of convergence is attained
ie., P"=P""'. Usually this occurs within a few
iterations.

As mentioned above, this method alone is not suffi-
cient to correct satisfactorily a continuous distribution,
for it cannot distinguish between true fast variations in
the measured distribution and purely statistical fluctua-
tions, and the latter will be grossly magnified in the
corrected distribution. Clearly, the statistical varia-
tions must be removed from the experimental distribu-
tion before it is corrected to avoid this problem. To
accomplish this the experimental spectrum is least-
squares fitted®) with an nth order polynomial, thus
effectively smoothing the distribution to an extent
determined by the degree of the polynomial. The poly-
nomial fit is then corrected by the iterative procedure
outlined above. A set of deviations of the corrected
polynomial from the uncorrected polynomial are then
calculated, and these are applied as corrections to the
original experimental distribution, i.e.,

P(E) = Q(E) — [Q(E) — P(E)] 4

where P and Q are the corrected and uncorrected poly-
nomial fits, respectively. This represents the final cor-
rected distribution.

In a beta spectrum to which this technique was ap-
plied, the spectrum was usually separated into two parts
which were overlapped to assure that the data was fitted
with a smooth curve. This allowed a good fit to the data
to be obtained using a lower order polynomial than
would otherwise have been necessary. The iterative
correction was applied to a composite of the fits from the
two parts of the experimental distribution.

3. Discussion of Computer Program

From the discussion above it should be apparent that
the numerical corrections described are more suited to
computer evaluation than to hand calculation. The cor-
rections which will be presented below were performed
using a FORTRAN program which was written for use
with the IBM 709 computer of the Indiana University
Research Computing Center.

The flow diagram shown in fig.1 shows, in somewhat

6) D. A. Howe and L. M. Langer, Phys. Rev. 124 (1961) 519.

7y J. 1. Hopkins, Rev. Sci. Instr. 22 (1951) 29.

8) J. G. Cramer Jr., B. J. Farmer and C. M. Class, Nucl. Instr.
and Meth. 16 (1962) 29.

9) R. H. Moore and R. K. Ziegler, Los Alamos Sci. Lab. Report,
LA-2367 (1959) (unpublished).
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Fig. 1. Flow diagram of resolution correction program. These
major steps of the program illustrate the resolution correction
technique,

abbreviated form, the major steps in the operation of the
program.
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Step 1. Input data is read into the computer memory,
including

1. the number of the data points in the pulse-height

distribution,

2. the pulse-height distribution to be corrected,

3. pulse-height-to-energy calibration parameters,

4. spectrometer resolution at 1 MeV resolution energy

dependence,

5. order of polynomial fit and convergence coefficient,

6. maximum number of iterations and/or minimum

Lexis coefficient.

The calculation terminates when either the maximum
number of iterations is reached or the correction has
converged to the degree of goodness of fit specified by
the Lexis coefficient'®). The latter is used rather than a
z-squared test for describing the goodness of fit because
the value of the Lexis coefficient is relatively independent
of the number of data points or degrees of freedom in
specifying a given goodness of fit. A listing of the input
data (excluding item 2) is included in the printed output
of the program.

Step 2. Energies corresponding to channel numbers
are calculated and tabulated from the calibration para-
meters which were read in, using the function E(J)=
al + b, where Iis the channel number and a and 6 are the
calibration parameters.

Step 3. The spectrometer line-shape function G(E, E’),
in this case a Gaussian distribution, is calculated and
tabulated for all values of £ and E’ in the region of
interest.

Step 4. The uncorrected pulse-height distribution is
fitted by least-square methods, as described in reference
10, to an nth order polynomial in E, where 7 is an input
parameter. The least-squares normal equations are
solved for the fitting parameters using the high speed
matrix inversion routine'!), SIMPLE.

Step 5. The fitted polynomial is evaluated and tabu-
lated over the same energy range as the input data,
generating the function Q(E).

Step 6. As aninitial estimate, the undistorted distribu-
tion P(E) is approximated by Q(E). Such an initial
estimate, chosen because the correction to the data is
small, is required by the iterative solution technique
employed.

Step 7. P"(E) is calculated in accordance with eq.(3).

Step 8. A Lexis coefficient®) is defined by

10) R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York,
1955) p. 774.

11y J. G. Cramer Jr., Subroutine for inverting matrices and pro-
cessing linear equations, Indiana University Physics Dept.
(1962) (unpublished).
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- f :m" P YEG(E, E') dE'} ’ / nQ_(E,-)} .

The Lexis coefficient is just the y-squared parameter
divided by the number of data points. In this case it
characterizes the goodness of fit between the polynomial
fit to the uncorrected pulse height distribution and the
corrected distribution after deliberate resolution dis-
tortion.

Step 9. The Lexis coefficient and the number of
iterations are examined to determine if either or both
satisfy the conditions for termination of the iteration
cycle, as set by the input data. If the termination condi-
tions are not met, the program increases the iteration
number by one and teruns to Step 7 above. Otherwise the
program proceeds to Step 10.
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. number of iterations and Lexis coefficient,
channel number,

energy,

original experimental spectrum, Q(E),

. corrected experimental spectrum, P(E),

. fit to @(E) by polynomial, Q(E),

. corrected polynomial, P(E),

. deviation Q(E) —P(E).

Step 12. Finish. In practice, control is transferred to a
beta spectrum analysis program'?) which acts on the
corrected distribution, P(E), to calculate electron mo-
mentum distributions and Fermi-Kurie plots and to
perform shape factor analysis.

O N AU A W

4. Example Corrections

Two negative beta emitters whose spectra have unique
forbidden shapes, T12°* and Y°!, were studied with the
47 scintillation spectrometer®) mentioned above. Since
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Fig. 2. The beta spectrum of TI1204, The solid curve through the data represents the polynomial fit which is corrected for distortion
by the iterative procedure and is then used to correct the data.

Step 10. The final result of the iteration process is set
equal to P(E), the corrected equivalent of the polynomial
fit Q(E). It is now assumed that the same deviation will
be found between the corrected and uncorrected poly-
nomial as between the corrected and uncorrected data,
and equation (4) is used to calculate the corrected pulse-
height distribution P(E).

Step 11. The results of the calculation are listed in the
output. This tabulation consists of the following:

the spectra of these isotopes are well known!?), such
measurements put very stringent requirements on both
the instrument and the correction procedure; for when
the data is subjected to shape factor analysis, the slightest

12) D. E. Wortman, Beta analysis program, Indiana University
Physics Department (1962) (unpublished).

13) Nuclear Data Sheets, compiled by K. Way e# al. (National
Academy of Science — National Research Council, Washing-
ton D.C.).
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Fig. 3. Fermi-Kurie plot of the beta spectrum of TI204. Circles represent the uncorrected data. The crosses show the data near
the end point after the correction procedure has been applied. It is this region where the correction is most noticeable. Below
E ~ 950 keV the corrected and uncorrected points are essentially indistinguishable in this representation, and so the former are

not shown.
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Fig. 4. Shape factor plot of the beta spectrum, corrected for distortion, of T1204, The solid curve represents the unigue shape factor of
the form 0.685 p2+4¢2 as predicted by theory. The end point consistent with the data is 0.771 MeV.

T T T T T T T T T L T
8t
14t Y 4
131 .,(" * ]
12 ’- e 4
LA . j
S »
Lot ]
0.9t SeaN___ 4
PWF (Eo-E)
0.8k < p
W

ot i

1 A i Al 1 L J 1 L 1 A

04 06 12 1.4

08

ENERGY - MeV

Fig. 5. Shape factor plot of the beta spectrum, corrected for distortion, of Y91. The solid curve represents the theoretical unigue shape
factor of the form 0.965 p2+4¢2. The end point consistent with the data is 1.52 MeV.
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distortion of the spectrum will be revealed as pronoun-
ced deviations from the unique forbidden shape. Such
analysis provides a much more sensitive way of dis-
playing small deviations from the unique shape than
does the conventional Fermi-Kurie plot.

Both spectra were measured with the 47 scintillation
spectrometer, and the energy calibration and resolution
of the instrument were measured with internal con-
version electrons both before and after the measurement
of the f# spectrum. Fig.2 shows the experimental pulse-
height distribution and the polynomial fit to this data,
the latter indicated by the solid line, for the T12%*
spectrum. Fig.3 shows a Fermi-Kurie plot of the same
data both before and after the correcting procedure has
been applied. The difference in the two is particularly
noticeable in the region of the end point, as has been
noted elsewhere?®).

Fig. 4 shows a shape-factor plot of the corrected data,
taken with the TI12°* source, along with a theoretical
prediction of this function'*) given by the relation,
S(W) = 0.685p% + ¢*. Previous work'?) has shown that
these should be in good agreement, as indeed they are.
Fig. 5 shows a similar shape-factor plot of the corrected
data from a measurement of the Y®' spectrum, and again
it is seen that the shape predicted by theory'#), 0.965p?
+ g2, is in good agreement with the experimental data,
as previous work'?) has shown.

5. Conclusion

The shape factor analysis shown above is a severe test
of the resolution distortion correction which has been
described in this paper, and represents strong evidence
for the accuracy of this procedure. Moreover, the tech-
nique is fairly general in its application and is not neces-
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sarily limited to situations where the spectrometer has a
Gaussian line-shape. In principle, the method can be
used to correct distortions in any spectrometer having a
line-shape which can be measured or calculated, e.g., in
instruments used for measuring continuous gamma ray
spectra or high energy beta spectra®). It should be noted,
however, that the accuracy of any such correction will
necessarily be limited by the accuracy with which the
line-shape of the instrument is known in the region of
interest, and that when the line-shape is broad and poorly
resolved, e.g., the proton recoil distribution obtained
when measuring a neutron energy spectrum with a
plastic scintillator, information and detail will neces-
sarily be lost.

It is hoped that this technique will prove useful in
cases such as those mentioned, where line-shape
distortion is a problem, making possible more quan-
titative measurements with scintillation and solid state
devices.
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