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A method has been devised for the correction of distortion 
effects arising from finite detector resolution in the measurement 
of continuous beta spectra. The correction procedure can, in 
principle, be used to correct distortions of any continuous spec- 
trum measured with any spectrometer having a line-shape of fair 
resolution which can be measured or calculated. The method was 
applied to beta spectra measured with a 4.x scintillation spectro- 
meter. Internal conversion lines were used to determine the basic 

line-shape of the instrument, which was found to be Gaussian to 
a very good approximation. The beta spectra of two elements, 
T1204 and y91, which have unique forbidden shapes were measured 
and corrected assuming the basic line-shape to be Gaussian. The 
correction procedure yields results compatible with the Fermi 
theory, and the experimental shape factor plots for these con- 
tinuous beta ray spectra are in very good agreement with 
theoretical unique shape factors. 

1. Introduction 

A recurring problem in nuclear spectroscopy has  been 
the correction in measured  distr ibutions for distort ion 
effects arising f rom finite detector resolution.  Since there 
is no exact general  solution to the resolution equat ion  
(see eq. (2)) which describes the resolution distort ion 
process, various approximate  me thods  have been pro- 
posed for dealing with the problem. W hen  the corrected 
distr ibution is composed  of  discrete spikes, the techni- 
ques o f  spec t rum str ipping and least-squares fitting o f  
l ine-shape distr ibutions ~'2) have had considerable 
success. Unfor tunate ly ,  neither of  these me thods  is par-  
ticularly successful when applied to con t inuous  spectra. 
For correction of  cont inuous  spectra other  me thods  have 
been proposed 3 - s) which lead to approximate  solutions 
o f  the integral resolution equat ion  (2). They  include 
Taylor-series expansion o f  the resolution equat ion,  
which leads to the derivative correction rule3); matr ix 
equat ion approximat ion  o f  the resolution equat ion for 
which a solution can be obtained by matr ix inversion4); 
and direct iterative solution o f  the resolution equat ion 
by numerical  methodsS). While each o f  these methods  
has some merit, none has been truly satisfactory for cor- 
recting cont inuous  spectra. 

Various causes may  be cited for failure o f  these 
methods  to yield a satisfactory approximate  solution o f  
eq. (2). The derivative rule 3) requires a detailed know- 
ledge of  the  second derivative of  the measured  distr ibu- 
t ion and  employs  approximat ions  that  are only valid in 
regions o f  the distr ibution where the distort ion is small. 
In particular,  this type o f  correction breaks down when 
applied to seriously distorted port ions o f  the distr ibu- 
tion, e.g., the " ta i l"  o f  a cont inuous  distr ibution.  The  
other techniques mentioned,  matrix inversion 4) and  

* This work supported by the Office of Naval Research and the 
National Science Foundation. 

iterative numerical  solutionS), both  suffer f rom a com-  
m o n  fault.  W h e n  either method  is applied to a conti- 
nuous  distr ibution having a mesh  or distance between 
points  which is small  compared  to the resolution-width 
o f  the characteristic l ine-shape (the response to mono-  
energetic electrons), any  small  statistical f luctuations in 
the measured  distr ibution will be blown up in the cor- 
rected distr ibution into large, wildly f luctuating high 
frequency variations. This  effect can be unders tood by 
recalling that  the finite resolution o f  the detector will 
smoo th  the observed distr ibution by averaging over any  
fluctuations which are rapid compared  to the resolution 
width. Thus  a rapid variation in the smoothed  distribu- 
tion would correspond to a very large variation indeed in 
the original unsmoo thed  distribution. Otherwise it 
would have been averaged out  altogether. Since the  
correction process effectively reverses this smooth ing  
and,  since it does not  dist inguish between true and sta- 
tistical f luctuations,  the slightest statistical f luctuat ion 
will be magnified out  o f  all proport ion in the corrected 
distribution. 

The correction technique which is presented in this 
paper  makes  use o f  the iterative solution technique,  but  
avoids the magnif icat ion o f  statistical f luctuations by 
performing the correction on an  nth-order  polynomial  
which is fitted to the experimental  data. The deviations 
o f  the corrected polynomial  f rom the original polyno- 
mial fit are used to correct  the experimental  data  in a 

1) R. L. Heath, IRE Trans. Nucl. Sci. NS-9 (1962) 294. 
z) p. McWilliams, W. S. Hall and H. E. Wegner, Rev. Sci. Instr. 

33 (1962) 70. 
3) G. E. Owen and H. Primakoff, Phys. Rev. 74 (1948)1406. 
4) j. H. Hubbell and N. E. Scofield, IRE Trans. Nucl. Sci. NS-5 

(1958) 156, 
W. R. Burrus, Bull. Am. Phys. Soc. 7 (1962) 9. 

s) K. Linden and N. Starfelt, Arkiv Fysik 7 (1954) 427, 
L. B. Gardner, IRE Trans. Nucl. Sci. NS-7 (1960) 36. 
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way which will be described below. In this way the mag-  
nification o f  statistical f luctuations is avoided without  
loss o f  resolution in the corrected distr ibution.  The  
technique of  iterative numerical  solution has  been used 
in preference to matrix inversion because it allows the 
restriction of  the solution to a positive definite funct ion 
and avoids the  round-off  error problems to which the 
latter method is subject. 

2. Discussion of Technique 
The correction procedure which will be described is 

generally applicable, but  it was developed specifically for 
application to pulse-height  distr ibutions which were 
measured with a 4~z beta scintillation spectrometer6). In 
any correction o f  this type au accurate knowledge o f  the 
l ine-shape of  the ins t rument  is required over the energy 
range of  interest. It is well established 7' 8) that  in organic 
scintillators at energies below about  3MeV,  negative 
beta rays have linear response and  a very nearly Gauss ian  
line-shape, the half-width o f  which varies inversely as 
the square-root  o f  the energy. This  was verified in the 
present  investigation by a s tudy of  monoenerget ic  inter- 
nal conversion electrons f rom Sn 119, A m  TM, Eu 152, 
Cs ~37 and Bi 2°7. The sources had  about  the same in- 
tensity and thickness as those used in the cont inuous  
spec t rum measurements  in order that  anomolous  in- 
s t rumenta l  distort ion of  the da ta  would be avoided. 

The l ine-shape o f  the ins t rument  can be writ ten as 

G(E,E') = (~kE) -~ exp - ( E ' - E ) 2 / k E ,  (1) 

where E' is the energy of  the incident beta particle and  E 
is the pulse-height  expressed in energy units. This  func-  
t ion is normalized to have unit  area, which corresponds  
to a probabili ty of  one that  an  incident beta will produce 
some pulse-height  in the spectrometer.  An  experimen- 
tally observed spectrum, Q(E), will be related to the true 
spectrum, P(E') ,  by the resolution equat ion 

Emax 
Q(E) = G(E, E')P(E') dE' .  (2) 

o 

This  equat ion mus t  be solved for P(E ' )  to give the desired 
correction, and to do this an iterative numerical  techni- 
que is used. Each iteration generates an  approximate  
solution Pn(E'),  where n is the iteration number .  This  
approximate  solution is obtained from that  o f  the 
preceeding iteration by the relation 

P,  (E) = P" -  ' (E)  

+ = [Q(E)- f l  . . . .  P"-~(E')G(E,E')dE'] (3) 

where ct is a convergence cons tant  between one and zero. 
For  the 0th approximat ion ,  i.e., the initial est imate of  P, 
we will use P°(E) = Q(E). The iteration is cont inued 
until  some arbitrary degree o f  convergence is attained 
i.e., p, ,~p, ,+l .  Usual ly  this occurs within a few 
iterations. 

As ment ioned  above, this me thod  alone is not  sum- 
cient to correct satisfactorily a con t inuous  distr ibution,  
for it cannot  dist inguish between true fast variations in 
the measured  distr ibution and  purely statistical fluctua- 
tions, and  the latter will be grossly magnified in the 
corrected distr ibution.  Clearly, the statistical varia- 
t ions mus t  be removed f rom the experimental  distribu- 
tion before it is corrected to avoid this problem. To 
accomplish this the experimental  spect rum is least- 
squares  fitted 9) with an nth order polynomial ,  thus  
effectively smooth ing  the distr ibution to an extent 
determined by the degree of  the polynomial .  The poly- 
nomial  fit is then corrected by the iterative procedure 
outlined above. A set of  deviations o f  the corrected 
polynomial  f rom the uncorrected polynomial  are then 
calculated, and  these are applied as corrections to the 
original exper imental  distr ibution,  i.e., 

P(E) = Q(E) - [Q(E) - if(E)] (4) 

where P and ~9 are the corrected and uncorrected poly- 
nomial  fits, respectively. This  represents the final cor- 
rected distr ibution.  

In a beta spec t rum to which this technique was ap- 
plied, the  spec t rum was usual ly separated into two parts  
which were overlapped to assure that  the data  was fitted 
with a smoo th  curve. This  allowed a good fit to the da ta  
to be obtained us ing a lower order polynomial  than  
would otherwise have been necessary. The  iterative 
correction was applied to a composi te  of  the fits f rom the 
two parts  of  the exper imental  distribution. 

3. Discussion of Computer Program 
From the discussion above it should be apparent  that  

the numerical  corrections described are more  suited to 
compute r  evaluat ion than  to hand  calculation. The cor- 
rections which will be presented below were performed 
us ing a F O R T R A N  program which was written for use 
with the IBM 709 compute r  o f  the Indiana  Universi ty 
Research C o m p u t i n g  Center.  

The  flow d iagram shown in fig.1 shows, in somewhat  

6) D.  A. Howe  and L. M. Langer,  Phys. Rev. 124 (1961) 519. 
7) j. I. Hopkins, Rev. Sci. Instr. 22 (1951) 29. 
8) J. G. Cramer Jr., B. J. Farmer and C. M. Class, Nuch Instr. 

and Meth. 16 (1962) 29. 
9) R. H. Moore and R. K. Ziegler, Los Alamos Sci. Lab. Report, 

LA-2367 (1959) (unpublished). 
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Step 1. Input  data  is read into the compute r  memory ,  
including 

1. the number  of  the da ta  points  in the pulse-height  
distr ibution,  

2. the pulse-height  distr ibution to be corrected, 
3. pulse-height-to-energy calibration parameters ,  
4. spectrometer  resolution at 1 MeV resolution energy 

dependence,  
5. order of  polynomial  fit and convergence coefficient, 
6. m a x i m u m  number  o f  iterations and/or  m i n i m u m  

Lexis coefficient. 
The calculation terminates  when either the m a x i m u m  

number  of  iterations is reached or the correction has 
converged to the degree o f  goodness  of  fit specified by 
the Lexis coefficientS°). The latter is used rather than  a 
z-squared test for describing the goodness  of  fit because 

4 the value o f  the Lexis coefficient is relatively independent  
o f  the number  o f  da ta  points or degrees o f  f reedom in 
specifying a given goodness  of  fit. A listing o f  the input 
da ta  (excluding item 2) is included in the printed ou tpu t  
o f  the program.  

B Step 2. Energies corresponding to channel  numbers  
are calculated and tabulated from the calibration para- 
meters which were read in, using the function E(I)= 
al + b, where 1 is the channel  number  and a and  b are the 

B calibration parameters .  
Step 3. The spectrometer  line-shape funct ion G(E, E'), 

in this case a Gauss ian  distr ibution,  is calculated and  
tabulated for all values of  E and E'  in the region o f  
interest. 

Step 4. The  uncorrected pulse-height distr ibution is 
fitted by least-square methods ,  as described in reference 
10, to an nth order polynomial  in E, where n is an input  
parameter .  The least-squares normal  equat ions are 
solved for the  fitting parameters  using the high speed 

9 matr ix inversion routine ~) ,  SIMPLE.  
Step 5. The fitted polynomial  is evaluated and  tabu-  

lated over the same energy range as the input  data, 
generat ing the funct ion Q(E). 

Step 6. As an initial estimate, the undis tor ted  distribu- 
t ion P(E) is approximated  by Q(E). Such an initial 
estimate, chosen because the correction to the data  is 

~z small, is required by the iterative solut ion technique 
employed.  

Step 7. P"(E) is calculated in accordance with eq.(3). 
Step 8. A Lexis coefficient 9) is defined by 

Fig. 1. Flow diagram of resolution correction program. These 
major steps of the program illustrate the resolution correction 

technique. 

abbreviated form, the major  steps in the operat ion o f  the 
program.  

10) R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 
1955) p. 774. 

11) j. G. Cramer Jr., Subroutine for inverting matrices and pro- 
cessing linear equations, Indiana University Physics Dept. 
(1962) (unpublished). 
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c . :  { 

The Lexis coefficient is jus t  the z-squared  parameter  
divided by the number  o f  da ta  points.  In this case it 
characterizes the goodness  o f  fit between the polynomial  
fit to the uncorrected pulse height  distr ibution and the  
corrected distr ibution after deliberate resolut ion dis- 
tort ion. 

Step 9. The Lexis coefficient and the n u m b e r  o f  
i terations are examined to determine if either or both  
satisfy the condit ions for te rminat ion  o f  the iteration 
cycle, as set by the input  data.  I f  the te rminat ion  condi- 
t ions are not  met,  the p rogram increases the i teration 
n u m b e r  by one and  teruns to Step 7 above. Otherwise the 
p rogram proceeds to Step 10. 

1. numbe r  of  iterations and  Lexis coefficient, 
2. channel  number ,  
3. energy, 
4. original experimental  spectrum, Q(E), 
5. corrected experimental  spectrum, P(E), 
6. fit to Q(E) by polynomial ,  ~9(E), 
7. corrected polynomial ,  P(E), 
8. deviation ~9(E)--P(E).  
Step 12. Finish. In practice, control  is transferred to a 

beta spec t rum analysis p rogram lz) which acts on the 
corrected distr ibution,  P(E), to calculate electron mo- 
men tum distr ibutions and  Fermi-Kur ie  plots and  to 
perform shape factor analysis. 

4. Example Corrections 
Two negative beta emitters whose spectra have unique 

forbidden shapes,  TI 2°4 and  y 9 t ,  were studied with the 
4~ scintillation spectrometer  6) ment ioned  above. Since 

, J 

I/'  \-,, 72o, 
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ENERGY MeV 

Fig. 2. The beta spectrum of T1204. The solid curve through the data repre~nts the polynomial fit which is corrected for distortion 
by the iterative procedure and is then u~d to correct the data. 

Step 10. The final result of  the iteration process is set 
equal  to P(E), the corrected equivalent  o f  the polynomial  
fit Lg(E). It is now assumed  that  the  same deviation will 
be found  between the corrected and  uncorrected poly- 
nomial  as between the corrected and  uncorrected data,  
and equat ion (4) is used to calculate the corrected pulse- 
height  distr ibution P(E). 

Step 11. The results of  the calculation are listed in the 
output .  This  tabulat ion consists o f  the following: 

the spectra o f  these isotopes are well knownt3) ,  such 
measurements  put  very str ingent requirements  on both  
the ins t rument  and  the correction procedure;  for when 
the da ta  is subjected to shape factor analysis,  the slightest 

12) D. E. Wortman, Beta analysis program, Indiana University 
Physics Department (1962) (unpublished). 

13) Nuclear Data Sheets, compiled by K. Way et al. (National 
Academy of Science - National Research Council, Washing- 
ton D.C.). 
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Fig. 3. Fermi-Kurie  plot of  the beta  spectrum of T1204, C.ircles represent the uncorrected data. The crosses show the data  near 
the end point after the correction procedure has been applied. I t  is this region where the correction is most  noticeable. Below 
E ~ 950 keV the corrected and uncorrected points are essentially indistinguishable in this representation, and so the former  are 

not shown. 
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Fig. 4. Shape factor plot of  the beta spectrum, corrected for distortion, of  T1204. The  solid curve represents the unique shape factor of  
the fo rm 0.685 p2+qZ as predicted by theory. The end point consistent with the data is 0.771 MeV. 
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Fig. 5. Shape fac to r  p lo t  o f  the beta spect rum,  cor rec ted f o r  d is to r t ion ,  o f  y g ]  The  sol id  curve represents the theoret ica l  unique shapo 
factor of  the form 0.965 p2+q2. The end point consistent with the data  is 1.52 MeV. 
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distortion of  the spectrum will be revealed as pronoun- 
ced deviations from the unique forbidden shape. Such 
analysis provides a much more sensitive way of  dis- 
playing small deviations from the unique shape than 
does the conventional Fermi-Kurie plot. 

Both spectra were measured with the 4~ scintillation 
spectrometer,  and the energy calibration and resolution 
of  the instrument were measured with internal con- 
version electrons both before and after the measurement 
o f  the fl spectrum. Fig.2 shows the experimental pulse- 
height distribution and the polynomial fit to this data, 
the latter indicated by the solid line, for the TI 2°4 
spectrum. Fig. 3 shows a Fermi-Kurie plot of  the same 
data both before and after the correcting procedure has 
been applied. The difference in the two is particularly 
noticeable in the region of  the end point, as has been 
noted elsewhereS). 

Fig. 4 shows a shape-factor plot of  the corrected data, 
taken with the TI 2°4 source, along with a theoretical 
prediction of  this function ~4) given by the relation, 
S(W) = 0.685p 2 + q2. Previous work t 3) has shown that 
these should be in good agreement, as indeed they are. 
Fig. 5 shows a similar shape-factor plot o f  the corrected 
data from a measurement of  the y91 spectrum, and again 
it is seen that the shape predicted by theory14), 0.965p 2 
+ q2, is in good agreement with the experimental data, 
as previous work 13) has shown. 

5. Conclusion 
The shape factor analysis shown above is a severe test 

o f  the resolution distortion correction which has been 
described in this paper, and represents strong evidence 
for the accuracy of  this procedure. Moreover, the tech- 
nique is fairly general in its application and is not neces- 

sarily limited to situations where the spectrometer has a 
Gaussian line-shape. In principle, the method can be 
used to correct distortions in any spectrometer having a 
line-shape which can be measured or calculated, e.g., in 
instruments used for measuring continuous gamma ray 
spectra or high energy beta spectraS). It should be noted, 
however, that the accuracy of  any such correction will 
necessarily be limited by the accuracy with which the 
line-shape of  the instrument is known in the region of  
interest, and that when the line-shape is broad and poorly 
resolved, e.g., the proton recoil distribution obtained 
when measuring a neutron energy spectrum with a 
plastic scintillator, information and detail will neces- 
sarily be lost. 

It is hoped that this technique will prove useful in 
cases such as those mentioned, where line-shape 
distortion is a problem, making possible more quan- 
titative measurements with scintillation and solid state 
devices. 
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