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The FORTRAN program LYRAN has been written for use in analyzing the beam dynamics of superconducting heavy ion linacs. 
The program is based on the program LYRA developed by A.H. Scholldorf at SUNY Stony Brook, but that original program has 
been extensively extended, modified, and restructured. LYRAN transports a group of input particles randomly distributed on a 
selected distribution function through linac elements which include rf accelerating and bunching elements, dipole and quadrupole 
magnets, electrostatic elements, and drift spaces. Second order corrections to dipole and quadrupole fields are included. A nonlinear 
optimization routine is incorporated, providing fast and efficient determination of accelerator configurations and parameter settings 
that provide desired beam properties. Beam envelope plotting is also included to provide a graphic display of beam characteristics. 

1. Introduction 

The program LYRA [1] was originally written by 
A.H. Scholldorf in Stony Brook, the State University of 
New York in 1978 to calculate linac beam fines consist- 
ing of SLRs (split loop resonators), drift spaces and 
quadrupoles. Six-dimensional beam transport was 
simulated through a sequence of independently phased, 
nonlinear resonators separated by drift spaces and 
quadrupoles. The transverse motions were simulated 
with 4-dimensional transfer matrices coupled by 2-di- 
mensional longitudinal motions. Monte Carlo tech- 
niques were used to simulate the evolution of the beam 
through the sequence of beam elements. 

Modifications and improvements to the Stony Brook 
program LYRA were begun at the University of 
Washington Nuclear Physics Laboratory in 1984 as a 
part of the superconducting linac construction project 
which was begun at that time. These modifications and 
improvements developed into the new program LYRAN 
which is described here. LYRAN has been extended to 
provide 6 (rather than 2) superconducting resonator 
types and in particular to include descriptions of the 
two quarter wave resonator designs (/3 = 0.1 and 0.2) 
used in the UW linac. Options for bi-uniform volume 
distributions and bi-uniform surface distributions in the 
6-dimensional beam phase space were added to the 
code. A "notched" version of the bi-uniform surface 

* On leave from Department of Technical Physics, Beijing 
University, Beijing, P.R. China. 

* * On leave from Department of Nuclear Physics, The Weiz- 
mann Institute of Science, Rehovot 76100, Israel. 

0168-9002/87/$03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Pubfishing Division) 

distribution (see fig. 1) is also provided to make more 
apparent the rotation of beam phase space ellipses 
during transport. Additional accelerator elements were 
added to the code, including dipole magnets with realis- 
tic fringing fields, electrostatic quadrupoles, 3-tube 
einzel lenses, 3-aperture einzel lenses, 2-tube accelerat- 
ing lenses, dc accelerating tubes, and charge-changing 
stripper foils have been put into the program. The 
second order correction terms for the dipole and 
quadrupole magnetic elements have also been added. 
With these additions, a complete accelerator system 
from ion source to target could be analyzed and opti- 
mized. 

In the original version of the program the optimiza- 
tion of accelerator configurations and parameters was a 
serious problem because, aside from linac quadrupole 
settings, the program had no search capabilities. To 
speed up the program and provide searching for the 
desired optical conditions automatically, the following 
modifications were made: (1) drift space transfer 
matrices of 6 x 6 dimensions were incorporated, (2) 
dipole and quadrupole transfer matrices were enlarged 
from 4 x 4 to 6 x 6 dimensions, (3) a resonator transfer 
matrix with more accuracy has replaced the old one, (4) 
the particle ray coordinate vector was enlarged from 4 
to 6 dimensions (5) the program was restructured to 
minimize page faults in the VAX 11/780 operating 
environment by transporting all rays through one ele- 
ment of the accelerator before moving to the next 
element, and (6) the beam envelopes both in transverse 
and longitudinal phase spaces can be plotted out so that 
the beam dynamics characteristics can be investigated 
more directly. Finally, (7) the Powell nonlinear pro- 
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Fig. 1. A phase ellipse in dW-dq~ space generated as a bi-uniform surface distribution. Note the "notch" used to monitor rotation of 
the phase ellipse. 

gramming method [3] was incorporated into the pro- 
gram to search for the desired optical conditions. 

2. Optimizing calculations 

The Powell nonlinear optimizing method is used in 
LYRAN to search automatically for the required opti- 
cal conditions. The main reasons we use this method 
are: (1) it is a type of conjugational gradient method 
which provides fast convergence; (2) one does not need 
to calculate the derivatives of the object function, mak- 
ing this algorithm convenient to use when the object 
function is implicit and complex; (3) the number  of op- 
tical boundary conditions does not necessarily have to 
be equal to the number  of variables in the optimization. 

The object function Fmi . is minimized by the search 

procedure. It is created from the specified optical condi- 
tions and requirements and expressed as: 

where f~ (i = 1, 2,- • . ,  n)  is an optical condition, which 
is one either of the transfer matrix elements or of the 
beam o matrix elements, xj ( j  = 1, 2 , - . . ,  m) is a varia- 
ble which stands for the focusing strength of quadru- 
poles, electrostatic lenses or resonator fields, fi0 is the 
desired value of f,., c i is the desired accuracy (weight 
factor). 

3. Beam profile calculations and plotting 

The original program LYRA provided line printer 
plots of beam ellipses in x - x ' ,  y - y ' ,  x - y ,  and in 
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Aq~-AE spaces (fig. 1). The program was designed to 
transport each ray of the beam phase space successively 
through all elements of the linac, recording the position 
of the ray in arrays representing selected points in the 
path. This method, which was originally used by Scholl- 
dorf very effectively in a large mainframe computer 
system, had the disadvantage in the VAX environment 
that it randomly accesses many large arrays, producing 
much page faulting and degraded program perfor- 
mance. 

For LYRAN this beam transport strategy was 
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Fig. 2. Beam envelopes in x-plane (left) and y-plane (right). 

changed in two ways. First the transport algorithm was 
modified so that all rays were transported together 
through one linac element at a time. This dramatically 
reduced page faulting in the VAX. Further, with this 
procedure the envelope and moments of the beam could 
be calculated at each transport point. This made it 
straightforward to provide new plots of beam envelopes 
in x-y  and Aeo-AE spaces. Plotting of these beam 
envelopes provides a direct indication of beam quality 
in both transverse and longitudinal phase spaces during 
transport through the accelerator (fig. 2). 

The program LYRAN has been in use in more or 
less the present form for about four months. We have 
used it to develop a mathematical model of the UW 
superconducting linac and its tandem Van de Graaff 
injector. As we gain operating experience with this new 
facility, this model will be refined so that it can be used 
to rapidly develop beam solutions and operating param- 
eters and can be used to reconfigure the accelerator 
system in response to changes in operating conditions, 
particularly resonator performance. In the near future 
an interface between LYRAN and the control system of 
the linac will be created so that calculated operating 
parameters based on the LYRAN model of the machine 
can be directly employed to set power supplies and 
control parameters. 
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Appendix 

Beam dynamics formulas 

In this Appendix we describe the equations, taken 
from standard sources, which are used as the six-dimen- 
sional transport matrices for LYRAN. 

(1) Description of beam phase space 

The coordinate vector of a particle ray is expressed 
by 

X ( x ,  x ' ,  y, y ' ,  Aq~, AE) .  (2) 

x is the particle position off-axis in one transverse 
direction, x '  = d x / d z ,  y is the particle position off-axis 
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in another transverse direction, y ' =  d y / d z ,  Z~q) is the 
phase angle relative to a standard particle, and A E  is 
the energy relative to a standard particle. 

To first order, the actions of a physical element on 
the particles are expressed by a transfer matrix M. After 
each element, the new coordinates of a particle ray are 

X = MX 0. (3) 

At the beginning of each fitting procedure, the initial 
beam o matrix was obtained from the statistics of the 
ensemble of transported particles. The new beam matrix 
a was then obtained from the equation: 

a = M%M y. (4) 

Here M is the transfer matrix of a beam line section, 
and M x is its transpose. 

(2) Accelerator element transfer matrices 

(a) Drift spaces: 

1 L 0 0 0 
0 1 0 0 0 
0 0 1 L 0 
0 0 0 1 0 
0 0 0 0 1 
0 0 0 0 0 

01 0 

0 (5) 
0 ' 
D 
1 

where L is the drift distance, 

to L 
D 

C Erfl3y ' 

to is the cycle frequency, c is the velocity of hght, E r is 
the particle rest energy, tic is the particle velocity, and 
~, = (1 - / ~ 2 ) -  1 / 2 .  

(b) Dipole magnets: 

c o s  ¢, 0 0 ~ ( 1 cos  ~ ) 
2 E s  

1 
~;in q~/R 0 0 sin 

2E~ 

o m, o 0 (6) 
0 1 0 0 

w R 
sin ~ 0 1 sin 

2Es 
0 0 1 

where q~ is the bending angle, R is the curvature radius, 
E s is the standard particle energy, v S is the standard 
particle velocity, and w is the cycle frequency. 

(c) Fringing fields: 

Rs in  g) 0 

cos  q~ 0 

0 1 

0 0 

wR(1 cos ~b) 0 
Os 

0 0 0 

1 0 0 0 0 0 
tan fl 

1 0 0 0 0 
R 
0 0 1 0 0 0 

0 0 _ t a n ( f l - ~ )  1 0 0 
R 

0 0 0 0 1 0 
0 0 0 0 0 1 

(7) 

where fl is the fringing angle, R is the curvature radius 
of the magnet, and 

( g l+s in2 f l "  ) 
q J = g l  R ~ o s ~  ( I - K 1 K 2 ) ( g )  tanfl 

(see ref. [4]). 
(d) Magnetic and electric quadrupoles: 

c o s ( w l )  ~ s i n ( a l l )  0 0 0 0 

w s i n ( w / )  c o s ( w / )  0 0 0 

0 0 c o s h ( w l )  1 s i n h ( w l )  0 . 8 

0 0 w s i n h ( t M )  c o s h ( w l )  0 

0 0 0 0 1 
0 0 0 0 0 

where l is the pole length, w 2 = G/(BR)  for magnetic 
quadrupoles, w 2=  V/(UR 2) for electrostatic quadru- 
poles, G is the magnetic field gradient, BR is the 
particle magnetic rigidity, V is the voltage on the pole, 
U is the normalized potential of the particle, R 0 is the 
aperture radius of the quadrupole, and D is the same as 
in the drift space matrix. 

(e) Second order terms of dipoles and quadrupoles: 
The option of performing second order calculations 

for dipoles and quadrupoles has been put into the 
program. 

0 o k )  1 ,6 ,  x,=ER,jxO+F_,r,,kx, xk, ( i ,  j ,  = (9) 

where Rij  is the transfer matrix of first order. T,j k 
denotes second order terms [5,6]. 

(f) Resonator gaps: 
Ignoring the second and higher order terms of x, x ' ,  

y, y ' ,  k~a and k E in the formulas of ref. [2], we get the 
following linear transfer matrix of resonator gaps: 

M = M[i ,  j ]  i, j =  1, 6, (10) 

where 

M11 = 1 - 2 t k )' 3 -l-- COS ~ ,  

M12 = _ a k . 

= -  1 a k T s i n ~ ,  M21 2 y3 

M 3 3  = Mn, 

M34 = M12, 

M43 = M n ,  

M ~  = M = ,  

ak r k 
3455 = 1 + cos ~, y3 

M6s = - Q  VT sin ~,  
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and 

M 6 6  = 1. 

The unlisted matrix elements are all zero and Q is the 
charge state, V is the voltage over the gap, a = Q V / 2 E ~ ,  

E~ is the energy of standard particle, k = w / v  s, G is 
velocity of standard particle, and T, T k and Tkk = transit 
time factor and its first and second order derivatives, 
respectively. 

When the program is searching for the required 
optical conditions, the above transfer matrix together 
with the matrices of other elements are used to get the 
new beam a matrix. Conditions on either the matrix 
elements of IVl or of o can be used as search criteria. 
This was discussed in section 2 above. After the opti- 
mizing procedures, individual particle rays will be 
calculated in the nonlinear approximations. 

(g) Transfer matrices of electrostatic lenses: 
It is usual in calculating beam transport with electro- 

static lenses to use empirical data given in the. literature 
[7-10]. However, this is inconvenient in the optimiza- 
tion of optical conditions. To avoid this inconvenience 
we have included direct calculations of transport 
matrices for electrostatic elements to the program 
LYRAN.  The transfer matrices are calculated from the 
potential distributions of these lenses, as discussed be- 
low. 

We use the following potential distributions: 

V2--  V 1 
~, ( ~ ) = v~ + 2 ,o---G-- 

[cosh(2~oz)+cosh(2~o(a+s))] (11) 
× l n  c o s h ( 2 ~ z )  + cosh(2oaa) ' 

A 

Vl VI 

Fig. 3. Three-tube einzel lens. 
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vl] 
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-I 
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v1 

s = 2 d  

Fig. 5. Two-tube accelerating lens. 

for 3-tube einzel lenses [9] (fig. 3), where ~0 = 1.31835, 

v l -  v2 [ ( z + s )  
~ ( z )  = I/1 ~ r ( s~  d -) L(z + s)  tan -1 R 

( z - s )  
+ ( z - s ) t a n  i R 

(z+d)  
- ( z  + d )  tan-1 R 

(z - d) ] 
- ( z -  d )  tan-1 R ' (12) 

.i 

for 3-aperture einzel lenses [11] (fig. 4), and 

t 1 1 + ~-1 - 1 - - l n - -  , (13) 
2~od c o s h ~ Z d )  

for 2-tube accelerating lenses [8] (fig. 5). 
The transfer matrix of dc accelerating tubes with 

uniform fields is calculated differently (fig. 6). The 
matrix of the entrance aperture is 1°1] n 2 - 1 , (14) 

4 L ~  

where ~ = ( V 2 / V 1 )  a/2, R is the radius of the entrance 
and exit apertures, L is the length of the tube, and 
~1 = 1 + ( R / q r L ) ( w  2 - 1). 
For  the exit aperture we have 

1 0] 
rt 2 - 1 , (15) 

4L'q2~ 2 

where ~2 = 1 - ( R / r r L ) ( 1  - 1/rl2). 

I 

IIII- 
R ~ 

I 

I11 

IIIv2 
Fig. 4. Three-aperture einzel lens. Fig. 6. Dc accelerating tube. 
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Usual ly ,  R / L  << 1 a n d  7/ is very large, there fore  42 - 1. 
T h e  t ransfer  mat r ix  of  the  un i fo rm  accelera t ing field 

is 

i 2L , / + 1  

1 
(16)  

20 
IZI 

o_ 

101 c ~" _ 

O0 0.2 0.4 0.(~ ~=.'~ 

Fig. 8. Three-tube einzel lens (with A/D = 1.0): (1) from ref. 
[7], (2) calculated by program LYRAN. 
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Fig. 9. Three-aperture einzel lens (with S/D = 1.0): (1) Calcu- 
lated by program LYRAN, (2) from ref. [7]. 
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Fig. 10. Two-tube einzel (with G/D = 1.0): (1) from ref. [7], (2) 
calculated by program LYRAN. 

Therefore ,  the  total  mat r ix  of  an accelera t ing  tube  is 

M T = M 3 ~ 1 1 2  M 1  

I 241 7/+ 1 

= ( , 1 2 _ 1 ) [ 2 4 1 _ n ( 2 4 2 + 1 ) + 1 ]  2 4 2 n + 7 / - 1  " 

8 4 1 4 2 ' r / 2 L  2 42" t /2  

(17) 
(h) Potent ia l  d i s t r ibu t ions  of  e lec t ros ta t ic  lenses: 
Suppose  we k n o w  the  po ten t i a l  d i s t r ibu t ions  of  the  

e lec t ros ta t ic  lenses  as s h o w n  in eqs. (12), (13) a n d  (14). 
T h e  t rans fe r  mat r ices  are  ca lcula ted  f rom these  analyt i-  
cal express ions .  

The  effect ive leng th  of  a lens is d iv ided  in to  N small  
in tervals  (see fig. 7). Each  po in t  z i is cons ide red  as a 
th in  lens, and  its ma t r ix  is 

I ' :1 _ n i n , + l -  2 h i +  1 , ( 1 8 )  

4di¢1 i 

where  

7]i ~ ~i/~)i 1' di = zi - zi- 1. 

The  interval  f rom z~ 1 to zi is cons ide red  as a u n i f o r m  
accelera t ing  field wi th  mat r ix  

I1 2di 
~1/2 

1 + , i  (19)  
1 

0 1/2 
rl i 

The  calcula ted  focal  lengths  are  very close to the  
d a t a  l is ted in ref. [7] and  s h o w n  in figs. 8 -10 .  
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