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Abstract: When alpha particles are inelastically scattered from an even nucleus, all particles in the 
interaction except the excited nucleus are spinless, with the results that the angular momentum 
relationships of the interaction are greatly simplified and that the polarization of the excited 
nucleus and the angular distribution of the decay radiation from this nucleus are related in a straight 
forward manner. For this situation, the functional dependence of the angular correlation between 
the decay radiation and the scattered alpha particle is calculated in terms of parameters describ- 
ing the polarization of the excited nucleus, assuming either gamma-ray or alpha-particle decay of 
this nucleus. The angular dependence of the gamma-ray circular polarization is also calculated 
and related to the nuclear polarization. Experiments are outlined for measuring nuclear polari- 
zation with particle-gamma or particle-particle correlation studies, and the kinematical problems 
inherent in the latter are discussed. 

1 .  I n t r o d u c t i o n  

When a nuclear reaction occurs, the residual nucleus is polarized, i.e. its angular 
momentum substates are populated in a particular way determined by the mechanism 
and the angular momentum relationships of the reaction. I f  the residual nucleus sub- 
sequently decays by emitting some sort of  radiation, its polarization will, in turn, 
determine the angular distribution of this radiation. It is, therefore, possible to obtain 
information about the polarization of  a nucleus excited in a nuclear reaction by study- 
ing the angular correlation of its decay radiation with the reaction particles. 

When an even nucleus is excited by the inelastic scattering of alpha particles the 
situation is particularly favourable for the study of nuclear polarization. Of the two 

initial and two final particles in the reaction, a l l  but the excited nucleus are spinless, 
thereby greatly simplifying the angular momentum relationships. In this paper the 
functional dependence of the angular correlation between the scattered alpha and the 
decay radiation will be calculated, and the relation between this function and the 
polarization of  the excited nucleus will be demonstrated, assuming either gamma-ray 
or alpha-particle emission by the excited nucleus. It will be shown that with a set of 
related correlation measurements it is experimentally feasible to determine completely 
the polarization of the excited nucleus following alpha-particle scattering. 

t This work was supported by the National Science Foundation. 
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The theory of angular correlations has progressed from early work 1), which used 
explicit summation over angular momentum substates, to the more elegant approach 
developed by Wigner, Racah, Blatt, Bied.enharn, Rose, Fano and others 2). This 
"new" formalism has had particular success facilitating the calculation of angular 
correlation functions where radioactive decay or compound-nucleus reactions are in- 
volved 3), but it loses much of its elegant simplicity when applied to direct reaction 
processes. Most direct reaction calculations of this type have involved either simpli- 
fying assumptions 4, 5) or elaborate formal treatment and numerical evaluation 6' 7). 

The approach of this paper will be to go back to the earlier method of explicitly 
summing over nuclear substates, while limiting the calculation to include primarily 
spinless particles so that the sums remain fairly simple. Attention will be directed to 
the decay of the polarized nucleus, while the reaction mechanism which induced this 
polarization will not, for the most part, be disenssed here. However, it is expected 
that data on nuclear polarization will prove to be of considerable value in the study 
of reaction mechanisms. 

The treatment which will be presented here differs from similar treatments of the 
decay of oriented nuclei 3, s) in one important respect: such treatments generally 
assume that the nucleus has been oriented by external forces, e.g., an external mag- 
netic field. In such a situation each nucleus will be in a definite and unique angular 
momentum substate, with a certain population of nuclei in each substate. In the 
situation of interest here, however, one must include the possibility that each nucleus 
can be in a mixture of substates, so that the angular distribution of the decay particles 
will be affected by coherent interference between these substates. Such coherent mix- 
ing of nuclear substates will generally be found in nuclei which are polarized by a 
nuclear reaction. In some particulars the same approach used in this paper has been 
taken by Schrnidt 9) in his work on proton spin-flip, by Alder and Winther lo) in 
their calculations on nuclear alignment involving the impulse approximation at scat- 
tering angles near 180 °, and by Litherland and Ferguson 11) in their work demon- 
strating the use of the angular correlation measurement as a tool for nuclear spectro- 
scopy. In the paper which follows this one 12), the formalism which is developed here 
will be applied to ~-~ angular correlation measurements on C 12 and Mg 24, and in- 
formation about the behaviour of the nuclear polarization as a function of scattering 
angle will be extracted from the data. A previous paper 13) has already presented pre- 
liminary results of ~-~ correlation measurements involving the alpha-particle decay 
of the 9.6 MeV state in C 12. 

2. The General Correlation Function 

To represent the polarization of the excited nucleus, the irreducible spherical tensor 
p~ will be used. The mth element of this tensor is a complex number which charac- 
terizes the population of the ruth substate of a nuclear level having total angular 
momentum j, the mth substate having spin projection m along the z or quantization 
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axis. The polarization tensor is normalized so that ,~_~[/~ml 2 = 1, and its elements are 
essentially the same as the reduced amplitudes Z~ * *" of Goldfarb and Bromley 14). 

The quantization direction will be chosen as the direction k I x kf, which is p*.rpen- 
dicular to the reaction plane defined by the momenta of the incident and outgoing 
alpha particles. The beam direction ki will be chosen as the x-axis. This coordinate 
system is shown in fig. 1. While this coordinate system represents a departure from 
many previous calculations 4-7) (which generally quantize along some recoil direction 
in the reaction plane), it has several advantages. First, it is stationary, and does not 
change with the particle angle or beam energy; secondly, when this quantization axis 
is chosen the population of certain substates may be excluded by the reflectional 
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Fig. l .  Coordinate system used m the calculations. Directions k i ,  kf ,  and kr of  the beam, scattered 
particle, and emitted radiation, respectively, are indicated. The x-axis is taken as the direction kt ; kf lies 
in the x-y-plane; the Z or quantization axis is taken as the direction o f k  i × kf. The angle ~, ,  specifies 
the angle of scattering of  the particle; 0 and ~b are the polar and azimuthal angles which specify the 

direction kr of  the emitted radiation. 

symmetry theorem of A. Bohr is); and finally, any pure substate with this quantiza- 
tion axis will give an isotropic correlation pattern in the reaction plane, and con- 
verscly, an observed non-isotropic correlation pattern can be directly attributed to 
coherent interference between substates. 

The Bohr theorem 15) mentioned above requires that if a natural parity state 
((3 +, l - ,  2 + . . . .  ) is excited in an even nucleus by inelastic alpha-particle scattering, 
only states will be excited for which ( J -  m) is even. Thus, of the 2J+ 1 possible sub- 
states, only J +  1 will be excited. Moreover, of the J +  1 non-zero coefficients in the 
polarization tensor which correspond to these substates, only J will be independent, 
since the overall phase of the polarization tensor p is arbitrary and the overall ampli- 
tude is restricted by the normalization condition. Thus, J phases and J amplitudes 
must be extracted from the correlation measurement to characterize the polarization 
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of art excited nucleus having angular momentum J. (For the excitation of unnatural 
parity statesZS), ( J - m )  will be odd, and J substates will be populated with J - 1  in- 
dependent. However, since these states usually decay by gamma cascades, their 
correlations are not covered by this calculation). 

The transition amplitude for particle emission from a polarized nucleus with angular 
momentum J and characterized by a coherent mixture of substates m, which decays 
to a state of angular momentum J '  and substates m', can be written t 

A~j,(k) = ~, p~<J'm'IH~(LM)IJm>. (1) 
ranl t 

Here p~ is an element of the polarization tensor; a is the polarization of the decay 
particle, i.e., the projection of  its spirt along k, its direction of propagation; and 
H,(L M) is the Hamiltonian for emission of a particle with polarization tr and orbital 
angular momentum characterized by L and M. Note that m = m' + M, so a sum over 
M is unnecessary. 

This expression is simplified by assuming that the excited nucleus decays to the 
ground state of an even nucleus, so that J '  = m' = 0. In this case the sum over m' 
can be dropped and (1) becomes: 

A~(k) = ~" p~<OOIHo(Jm)lJm>. (2) 
n l  

The Hamiltonian cart be separated into an irreducible tensor operator T(Jm) which 
is a function only of the internal coordinates of the nucleus, and the rotation opera- 
tor s) D which describes the emission of  the decay particle in terms of the external 
coordinate system (see Appendix A). Further, we may apply the Wigner-Eckart 
theorem s) to the matrix element involving T(Jm) to reduce it to a Clebsch-Gordan 
coefficient and a reduced matrix element which does not depend on m. When this is 
done the transition amplitude becomes 

A~(k) <OIIT(J)IIJ> ~ J ~ = p . o . , ( ~ ,  o, o)c(JJO; m, - m) 
m 

OC ~ ( - -  ra dr -imeb d ( 3 )  
1) pine dm,(O). 

m 

The correlation function which corresponds to this transition amplitude is 
m d - i m ~  J 2 W7(O, 4) = IA~(k)l z oc I E ( - 1 )  p ine  d,,(0)[ (4) 

m 

and, when the radiation from the decaying state is detected by an instrument which is 
not sensitive to the polarization of the emitted radiation, as is generally the case, the 
unpolarized correlation function is of interest. This function is obtained by summing 
over tr: 

W~(O, ¢k) oc ~, I E ( -  1)mp~e-i"'l'd~,(O)l 2" (5) 

t Eq. (1) is generally valid, and  m a y  be applied in any case were J '  is the excited state o f  a nucleus.  
The  special case where J '  is a nuclear  g round  state, however,  requires  special considerat ion.  Here 
the sum over m '  mus t  be incoherent  and  shou ld  be applied after the  ampl i tude  has  been squared,  
as in eq. (4). These  considera t ions  do no t  affect the  present  calculat ion,  since J '  = 0 and  the  s u m  
over  m '  has  been dropped.  
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Up to this point, the treatment has been fairly general, except for the assumption 
that the decay proceeds to a spinless final nucleus. This assumption will be valid 
in the majority of practical situations and is essential for an unambiguous deter- 
mination of  polarization of  the excited nucleus. The correlation function (5) has 
been reduced to a fairly simple form involving the reduced rotation matrix elements 
d~.,,,(O). Appendix A contains a summary of the properties of this function. 

As yet, however, no assumptions about the properties of the emitted particle have 
been made and no use has been made of the particular choice of the quantization axis 
which was mentioned in sect. 1 above. In the succeeding sections, this basic expression 
will be applied to correlations involving gamma rays and alpha particles, and the 
implications of  expression (4) for gamma-ray polarization measurements will be 
investigated. 

3. Gamma-Ray Angular Correlations 
Gamma rays may be produced in states of  right or left circular polarization, or in 

some coherent mixture of  these corresponding to linear polarization. In the notation 
used here right and left circular polarization are designated by tr = - 1 and 1, resp- 
ectively, in accordance with the optical convention. Both of  these polarization states 
must be included in the calculation of the correlation function, and so the rotation 
matrix elements d~ _ 1 and d~l appear in the calculation and must be evaluated. 

Since the first excited states of a large majority of  the even nuclei have spin and 
parity 2 +, the calculation will be limited to the case J = 2. However, the methods 
outlined here can easily be applied to correlations involving other values of J, and a 
tabulation of values of  rotation matrix elements up to J = 4 is included in appendix 
A for this purpose. 

As mentioned above, excitation of a natural parity state by inelastic alpha-particle 
scattering will only produce substates in the excited nucleus such that ( J - m )  is even. 
Thus, for J = 2 only m = 0 and _+ 2 substates are populated and need be considered 
in the calculation. The corresponding elements of  the rotation matrix, as given in 
appendix A, are 

d~+,(O) = -½  sin 0(1___ cos 0), 

d~o±~(O) = +½x/6 sin 0 cos 0, (6) 

d2~±1(0)  = ½ sin 0(1~ cos 0). 

Substituting these values into (3), the transition amplitude is 

A~21(0, ep) oc sin 0[p22(1 _+ cos 0)e-2'÷-T- 6p 2 cos 0-p2_2(1 -T- cos 0)e2'#]. (7) 

The terms of the polarization tensor will be normalized to the m = - 2  substate, 
thereby permitting the nuclear polarization to be characterized by two relative ampli- 
tudes a 2 and ao, and two relative phases 62 and 6 0. These parameters are defined by 
the relations 

p2 = aze,a2p2_2 ' a2 = [p2/p221, e I'2 = p~/a2p2-2, 

po 2 = aoe"Op2_2, a 0 = [p2/p2_21 , e '~o = p 2 / a o p 2 ,  _. 
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Using these normalized coefficients and eq. (7) above, and substituting for the first 
equality in eq. (4), the correlation function is 

W?I(o, fft~) oc sin20{[az2(1 + cos20+2 cos 0)+6ao 2 cos20+(l+ cos20T-2 cos 0)] 

- 2~6ao cos 0[a2(cos 0 + 1) cos 2 ( 4 -  ½(62 - 60)) + (cos 0 -T- 1) cos 2(4 - ½60)] (8) 

-2a2 sin20 cos 4(4-¼62)}. 

A sum over gamma-ray polarization removes the terms preceded by -I- signs and thus 
the polarization-independent correlation function is 

W2(O, c~) o: sin20{[(a~ + 1)(1 + cos20) + 6ao 2 cos20] 

- -  2 N / 6 a  0 c o s 2 0 [ a 2  c o s  2((~ - -  ½((~2 - -  (~o)) + c o s  2(~) - -  ½(~0)] (9 )  

- 2a2 sin20 cos 4(~b- ¼62)}. 

In the reaction plane (0 = ½70 the terms which are dependent on ao drop out and the 
correlation function simplifies to 

W2(½n, 4) oc (1+a~)-Ea2 cos 4(~-¼62), 

oc (I - a2 )  2 +4a2 sin22(~-¼62). (10) 

This for (10) is essentially that given by Schmidt 9) for the correlation function in 
the reaction plane for prototls, and he has pointed out 16) that since 

flv¢2(½ , oc [l-Fa~], 
oc Ip212+lp2212, 

oc 1-1p212, 

one can, in principle, deduce the value of [p2[ from the average gamma-ray intensity 
in the reaction plane. In practice, however, required information about cross sections, 
target thicknesses, counter efficiencies, and coincidence efficiency is generally subject 
to sizable errors. Moreover, the phase of po 2 is not measurable by such an approach. 

The last expression in (10) is just that usually given for J = 2 correlations in the 
reaction plane 4-7, tT) i.e., [A +Bsin  2 (4-~bo)]- In the correlation experiments the 
parameters 40 and A/B  are usuaUy extracted from the data and presented as a func- 
tion of alpha-particle angle. From (10) the significance of these parameters in terms 
of nuclear polarization becomes apparent. 

First, aside from the overall intensity mentioned above, the correlation pattern in 
the reaction plane is independent ofp 2 and depends only on p2 and p2 2. Moreover, 
aside from these parameters and the assumption that J = 2, the form of the correla- 
tion pattern is purely the result of the geometry of angular momentum and gives no 
information about the reaction itself. Whether the scattering is a direct reaction or 
the result of  compound nucleus formation, the correlation will have form (10) in the 
reaction plane. 
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The relative phase 62 of  the m = ± 2 substates determines the angular position of  
the maxima and minima in the correlation pattern, and the relative amplitude az 
determines the degree of isotropy which is shown by the correlation pattern. I f  a2 = 0, 
indicating that the nucleus has no m = + 2  component, the radiation pattern will 
have no ~ dependence and will be completely isotropic. I f  a 2 = 1, so that the m = -t- 2 
substates are populated equally, the correlation pattern will have no isotropic com- 
ponent and will be a pure sinusoid of  the form sin z 2(4-¼62).  
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Fig. 2. Nuclear polarization parameters a= versus A/B ratio. Curve 1 represents the functional de- 
pendence ofa=(A/B) on the scales as given. In curve 2 the A/B value is 10 times that given by the lower 

scale. 

The functional relationship between A/B and a 2, as given by (10), contains im- 
plications of some importance concerning the information obtainable from correla- 
tion data. Setting A/B = (1-a2)2/4a2 and solving fora2  gives 

. , .  

-.a; "= 1 -2 / (1  ± x/1 +B/A). ( l l )  

The ± sign on the radical is of  particular significance, for if tJa0~ positive root  is taken 
as a2, it is found that the flegative root corresponds to 1/az~'~.In other words, A/B has 
the same value for a2 as for 1/a 2. Fig. 2 illustrates the funcd/)nal behaviour of  a2 as a 
function of  A/B. The physical significance of  this behaviour is that the observed cor- 
relation pattern for unpolarized radiation is unchanged by an exchange of  positive 
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and negative m-values. This property of the correlation is true not only in the reaction 
plane but over the whole sphere. 

This puts a peculiar restriction on any correlation measurements which are in- 
sensitive to the polarization of  the radiation; the ratio of positive to negative substate 
population can be measured, but it is not possible to determine which is which. It 
will be shown in the nextsection,  however, that a fairly simple polarization deter- 
mination removes this ambiguity. 

As fig. 2 illustrates, a 2 has an extremely steep slope when A/B is near zero, and there 
will necessarily be fairly sizable errors in a 2 when is has values near 1. Moreover, 
unless there is a sizable difference between the contributions from the m = 2 and 
- 2  substates, the isotropic component of the correlation pattern will be fairly small. 

Of the four independent parameters, ao, 6o, a 2 and 62 which characterize the align- 
ment of the excited nucleus, only two, or three at most, can be measured in the 
reaction plane. On the other hand, if a value of 0 other than ½n is chosen for the angle 
of measurement, all four parameters can, in principle, be extracted from the observed 
correlation function but, in practice, the parameters are mixed in such a way as to 
make such an analysis extremely difficult. If, however, the correlation function is 
measured both in the reaction plane and at some angle to the plane, the parameters 
az and 62 can be determined from the reaction plane data and used to analyse the 
more complex data measured outside the plane. This analysis proceeds as follows: 
consider the correlation function which will appear at 0 = ¼n. From (9) the correlation 
function is 

W2(¼n, ~b) = b x q-b 2 cos 2~b+b3 sin 2~+ b o (a  2 cos 4(~b-¼62)), (12) 

where bo = arbitrary normalization constant 

bl = - ½  bo(l + a2 z +2aoZ), 

b2 = +aobo x/6[cos 6o+a2 cos(62-6o)] ,  

b 3 = +aobo x/6[sin 6oq-a 2 COS (O3--Oo) ]. 

The correlation function has been written in this form to simplify extraction of the 
b coefficients e.g., by least-squares analysis. Notice that the known parameters a2 and 
62 were grouped in the last term to find bo, the normalizati.oh constant. The b coeffi- 
cients are related to a 0 and 60 by the equations : ....... ~: 

F b3(l+a2cos62)+b, a2sin621 
60 = arctg L _ b 2 ~ ; ~ o o s ~ a 2 ~ n ~ 2 _ l  , 

(13) 
ao = b2[[box/6(cos tSo + a2 cos (<52 - 60))]. 

Thus the correlation functions measured in and out of the reaction plane allow 
complete determination of the polarization parameters, aside from the m-value sign am- 
biguity mentioned above. Using the normalization condition thatp_ 22 = (a 22 +a02 + 1)-~, 
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the polarization tensor p~ can be represented as a column matrix by 

p2 = (a~+ao2+l)-~r |aoe,+O / (14) 

4. Gamma-Ray Polarization and the Sign of  m 

As mentioned in sect. 3, a correlation function which is measured with a gamma- 
ray detector insensitive to gamma-ray polarization will be invariant under an ex- 
change of positive and negative m values; there remains an overall sign ambiguity in 
any nuclear polarization measurement which depends upon angular correlation 
studies alone. However, if  the gamma detector were'made sensitive to gamma-ray 
polarization the ambiguity would not exist, since the correlation function of  polarized 
gamma rays, as given by eq. (5), is strongly dependent on the sign of  the m values. 

While it is not experimentally feasible to measure the correlation of  polarized 
gamma rays, it should be possible to measure the gamma ray polarization at a few 
angles to resolve the sign ambiguity, and such a measurement is simplified by the fact 
that only the sign, not the magnitude, of  the gamma-ray polarization is required. The 
value of such polarization measurements as a test of  direct reaction theory has already 
been discussed by Satchler ta). 

The gamma ray polarization function Sj(O, 4,) is related to the correlation function 
by the usual relation 

Wf'(O, 4,)- Wj-'(O, 4,) Wf"(O, 4,)- Wj-X(O, 4,) (15a) 
sj(o, 4,) = w / " ( o ,  4,)+ w f  l(o, 4,) = 2w,(o, 4,) 

Clearly, the denominator of  this expression is just the polarization-independent corre- 
lation function. 

For  the case J = 2 the polarization function can be calculated from eq. (8) to give 

$2(0 ' 4,) = 2 sin20 cos 0 {(a22 _ 1 ) -aox /~[a  2 cos 2(4,-½(62 - 6 o )  ) -  cos 2(4,-½6o)]}. 
w2(o, 4,) 

(15b) 

Analysis of existing experimental data 12) shows that a 2 and presumably a o can be 
expected to vary fairly regularly between one and zero and out of  phase with the 
angular distribution of inelastic scattering. I f  the assumption is made that the substate 
population must vary smoothly as a function of  angle, then the dominance of one or 
the other of the m = 4-2 substates can only change when a2 = 1. Thus the gamma- 
ray polarization measurements need only be done at a few angles to remove the sign 
ambiguity. 

Examination of eq. (15b) shows that the radiation will be unpolarized in the re- 
action plane but will become strongly polarized for values of  0 near zero or u. Un- 
fortunately, due to the overall sin20 dependence of W2(O, 4,), the intensity of  the 



~02 J.O. CRAME]R, Jr. AND W. W. EIDSON 

radiation decreases just where it becomes strongly polarized. However, if one chooses 
some fairly shallow angle, e.g. ~n, and also chooses a reaction particle angle such 
that ao and a2 have small values, say 0.1 and an angle ~ such that ~b = +¼62, then we 
lind that $2 = -0.66. Here the gamma rays are polarized with enough intensity to 
make possible a measurement of the sign of their polarization. 

Thus at least for J = 2, nuclear polarization can be completely determined as a 
function of scattering angle from the correlation pattern and polarization of the gam- 
ma radiation emitted by the excited nucleus. In the next section it will be shown that 
the same information can b~ obtained when the nucleus decays by alpha-particle 
emission, although in that case the sign ambiguity cannot be resolved. 

5. Angular Correlations for Alpha Decay 

When the nucleus which has been excited by alpha-particle inelastic scattering 
breaks up by alpha-particle emission, the correlation function will differ from that 
calculated above because of the difference in spin of the photon and alpha particle. 
Because the alpha particle is spinless, calculation of the correlation function is sim- 
plified somewhat since the sum over polarization states of the emitted radiation is 
removed. Consequently, however, it is not longer possible to resolve by a polarization 
measurement the sign ambiguity discussed in sect. 4. 

The chief disadvantage of alpha-alpha over alpha-gamma correlations is the in- 
creased complexity of the kinematical relationships arising from the effect of the mo- 
mentum of the decay alpha as measured in the laboratory system of the velocity of 
the recoiling excited nucleus. This creates serious experimental problems, particularly 
in the lighter nuclei. Since the correlation functions calculated here assume that the 
decaying nucleus is at rest, the angular coordinates used in the calculation are, in 
effect, measured in the centre of mass of the recoiling excited nucleus, hereafter de- 
noted as the RCM system. Thus the transformations from the laboratory to the RCM 
system and back must be well understood before the results of alpha-alpha angular 
correlation experiments can be interpreted in terms of this formalism. This kinematics 
problem has been dealt with to some extent in a previous paper 13), and is discussed 
in greater detail in appendix B. 

Despite these kinematical difficulties, there are several advantages of alpha-alpha 
over alpha-gamma angular correlation measurements: 
(1) problems arising from background are greatly reduced; 
(2) radiation from the decays of different states can be better resolved and separated, 
allowing simultaneous measurement of several correlation functions; 
(3) counter solid angles can be restricted to minimize distortions due to finite geom- 
etry; 
(4) counter efficiency will generally be 100 %. 

For these reasons, alpha-alpha correlations are an excellent way of studying the 
polarization of excited states which are unbound to alpha decay. 



ANGULAR CORRELATIONS 603  

In this calculation as in the gamma-ray case, only J -- 2 will be explicitly calculated, 
but this serves as an example for extending this type of  calculation to other Y values. 
As before, the Bohr theorem excludes the population of  the m -- 1 and - 1 substates. 
Therefore, only the rotation matrix elements do2o and d~2o are needed for the cal- 
culation. From the relations given in appendix A, the elements have the values 

d~2o(O) = ½~/~ sin20, d2oo(O) = ½(3 cos20-1) .  

Substituting these values into (3), taking the absolute square of  the transition 
amplitude, and normalizing the elements of  the polarization tensor to p2_ 2 as before, 
give the correlation function 

W°(O, ~) oc [½ sin+O(a~ + I) + ao2(3 cos20-1 )  2] 

+2x/~ao sin20(3 cos20 -1)]-a2 cos 2 ( ~ - ½ ( 6 2 - 6 o ) ) +  cos 2(~b-½6o)] (16) 

+ 3a2 sin+O cos 4(~b- ¼62). 

Unlike the gamma-ray correlation function (9), this expression does not reduce to 
a simple form in the reaction plane. On the other hand, when cos Oo = + l/x/3, at 
angles of  approximately 55 ° and 125 °, the correlation function does reduce to a simple 
form, because at these angles the rotation matrix element d~o vanishes. When this 
happens, the correlation function becomes 

w°(Oo, oc (1+a )+2a2 cos 4( -¼62), 
(17) 

oc (1 - a2) 2 + 4ae cos ' 2 (O-  ¼62). 

This function is quite similar to (10), the gamma ray correlation function in the 
reaction plane, and differs only in phase from that expression. Because of  this simi- 
larity, the remarks in sect. 3 concerning the relation of  az to the A/B ratio, the ob- 
served correlation pattern, and the substate sign ambiguity apply here also. 

In the reaction plane all populated substates will contribute to the correlation 
function, which has the form 

W°(½n, ~) = cl + c2 cos 2~ + c3 sin 2~ + Co(3a2 cos 4 ( ~ -  ¼62)), 

where Co is an arbitrary normalization constant 

cl = Co(i(l+a~)+ao~), 

c2 = -- 2x/~ao Co(COS 6o + a2 cos (62 -- 6o) ), (18) 

c3 = - 2x/~ao co(sin 6o + a2 sin (6, --fie) ). 

Here, as in (12), the function has been written in a form which will simplify ex- 
traction of  the c coefficients. These coefficients are related to the parameters a o a+~d 
6 o by 

Fc3(l + a 2 cos 62)+c2(a 2 sin 62) 1 
6 o = arctg lc2(1 + a2 cos 62)-c3(a2 sin J2)1 ' (19) 

ao = - c,/[2Co~/~(cos 6o + a2 cos (62 - 6o))]. 
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Thus, by choosing the angles at which the correlation function was measured, it 
has again been possible to extract all the coefficients in the polarization matrix. 

Since the rotation matrix has the property that d~o = ( -  1)" d~mo, when one of 
the matrix elements vanishes, there will always be a significant simplification in the 
correlation function. Moreover, these favourable angles for Correlation measurements 
will not, in general, correspond to the reaction plane (see appendix l, subsects. A.1 

"and A.2). As an example the J = 3 correlation function 13) is qtiite complicated at 
most angles, but when cos 0 = + l/x/5, i.e., at 63 ° and l l7 °, d~lo vanishes and the 
correlation function becomes W°(0o, 4) oc [(1 + a 2) -  2a3 cos 6(4-~63)], in perfect 
analogy with (10). States of higher angular momentum will also have such favourable 
angles, although the simplification will not always be so dramatic. Since it is impor- 
tant to understand the behaviour of the correlation function before undertaking a 
measurement of this type, subsect. A.5 of appendix A tabulates the zeroes of the 
relevant rotation matrix elements up to J = 4. 

6, Conclusion 

The calculations presented above demonstrate the relation between an observed 
correlation function and the polarization of the excited nucleus. Moreover, it has been 
shown that in many situations it is possible to determine completely the polarization 
of the excited nucleus. 

While this treatment has been restricted to the scattering of alpha particles, it can 
be generalized to particles with spin by allowing the population of all the substates, 
including those for which (J-m) is odd. On the other hand, the assumption that the 
excited nucleus is even and that the decay proceeds to a spinless ground state are 
fairly essential if useful information about nuclear polarization is to be obtained. 
Without these assumptions the condition of equality between the angular momentum 
and polarization of the excited nucleus and that of the decay transition is lost, and the 
correlation function is complicated by other effects. Correlations measured under 
these circumstances would be extremely difficult to interpret. 

Thus far, the scope of this paper has been limited to those features of angular 
correlation functions which are produced by the polarization of the excited nucleus 
and the geometry of angular momentum, and has dealt primarily with the extraction 
of nuclear polarization information from angular correlation data. To put the pre- 
ceding discussion in proper perspective, however, this polarization information should 
be related directly to the nuclear reaction which produced it and to the other measur- 
able quantities which permit the study of the reaction. 

The general reaction may be characterized in terms of a set of reaction amplitudes 
Tj~'~'(O, E), where the primed symbols refer to the initial system and the unprimed 
symbols to the final system; j and m are the angular momentum and its projection 
for the initial and final nuclei, s and ~ are the spin and its projection for the bombard- 
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ing and reaction particles, and 0 and E are the angle at which the reaction particle is 
observed and the energy of the bombarding particle. There will be (2j+ 1)(2s+ 1) 
(2j'+ 1)(2s' + I) such amplitudes, which may vary with angle and energy, and, except 
for symmetries and selection rules dictated by the details of the reaction, will be in- 
dependent of each other. This set of amplitudes represents the maximum information 
which can be derived from the experimental study of a given reaction. 

One can imagine an idealized experiment in which polarized beams, polarized 
targets, and polarization-sensitive detectors are used. In such an experiment it would 
be possible to reconstruct the reaction amplitudes completely (aside from an overall 
phase), provided as many independent experimental parameters were determined as 
the number of independent amplitudes. Such determinations might include, however, 
such formidable measurements as beam- and target-polarization-dependent cross 
sections, nuclear polarizations, and reaction-particle polarizations. 

Clearly, such difficult measurements are impractical for most reactions, but for the 
special case of the inelastic scattering of alpha particles from even nuclei, measurement 
of the differential cross section and the nuclear polarization tensor, as defined in 
sect. 2 of this paper, permits unambiguous reconstruction of the complete set of am- 
plitudes. This is possible because in this case j '  = s' = s = 0, and so there are at most 
2j+ 1 independent amplitudes to be determined. The polarization tensor, which has 
2j+ I elements, together with the cross section, will in all cases provide just the num- 
ber of independent quantities required for the reconstruction of the amplitudes within 
an overall phase. 

The cross section is related to the scattering amplitudes by the relation d~/d~ 
= [~m Tjrnl 2 = ~,.I rj.,I 2, with the sum taken outside the square in the last expression 
because the cross terms vanish when averaged over nuclear coordinates. The elements 
of the polarization tensor are related to the scattering amplitudes by p~ = Tj.,/ 
x/(~.,[ T~ml2)" Thus measurements of the cross section and nuclear polarization are not 
redundant, but give completmentary information about the nuclear reaction, for the 
cross section is independent of the relative phases and relative magnitudes of the ampli- 
tudes and depends only on their overall absolute magnitude, while the polarization 
tensor is independent of this overall magnitude but gives directly the relative phases 
and relative magnitudes of the scattering amplitudes. In terms of the differential cross 
section and polarization tensor, the scattering amplitudes are given within an overall 
phase by Tjm= pS~x/(da/dfl). (While it is not possible to determine this overall phase, 
it has recently been shown 27) that the overall phase difference between amplitudes 
at slightly different energies can, in certain cases, be determined from a study of 
nuclear bremsstrahlung.) 

It is clear that the determination of scattering amplitudes in this way can give im- 
proved insight in the study of nuclear reactions and will provide more rigorous com- 
parisons of experiment with theoretical predictions. This type of test should be all the 
more interesting because compound nucleus 26) and direct reaction theories 4, s, 7) 
involving different degrees of approximation apparently make very different pre- 
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dictions concerning the scattering amplitudes while predicting similar behaviour of 
the differential cross section. 

The authors wish to thank Professor Marc Ross for many helpful discussions while 
this work was in progress, and to acknowledge the helpful suggestions of Professor 
F. H. Schmidt, Dr. G. R. Satchler and Dr. John G. Wills. 

Appendix A 

PROPERTIES OF THE ROTATION MATRIX 

In the above calculations, the transition amplitudes and correlation functions were 
written in terms of rotation matrices, rather than spherical harmonics, Legendre poly- 
nomials, Clebsch-Gordan coefficients, etc. as is the common practice. This was done 
because the correlation functions have a particularly simple form when presented in 
this way, but there is one drawback to this approach: although the rotation matrices 
are well known functions, they are not widely tabulated. For this reason, it seems 
appropriate to include a summary of the properties and values of rotation matrices 
which are relevant to the type of calculation outlined above. Throughout this paper, 
the notation of Rose a), and of Brink and Satehler 19) has been adopted for the ro- 
tation operator. This operator is related to that of Wigner 20) and of Edmonds 21) 
by: Dim,, (Rose) = / f - m ' - m  (W&E). 

A.1. GENERAL FORMULAE 

with 

DJ.,.(¢,, o, ~) = e - " ' d ~ , . ( O ) ~  - ' ' ~  

d~,,,,(O) = [ ( j -  m')!(j + m') l ( j -  m) l(j + m) l] ~r 

x • [( - 1)k((j - m' - k)t(j + m - k)t(k + m' - m)tk ! ) - '  
k 

x (cos ½0)2J+'-"-2k( - sin ½0) ' ' - ' +2k ]  

and the reeursion relation is 

L j+ma  L j+ma  

A.2. SYMMETRY RELATIONS 

d~,m(O) = ( -  1)m'-'dJ-m,-.(O), 

= ( - 1) j - " ' d ~  m,.(O + =), 
= ( - 1 )J - "  d ~ , _ . ( o  + ,0 ,  

= ( -  ~)- '--d~.. ,(O), 

= a ~ . , ( - o ) ,  

~r 
d~7_~ =+½ sin ½0. 
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A.3. SPECIAL VALUES 

d~,,,( O) = [( 2 j) !/(j + m) ! ( j -  m)!]½(cos ½0)/+m( - s in ½0Y -m, 

d~o(O) = ( -  1)~'['(j - Iml)t/(j+ Iml) t]½P/ml(cos 0), 

dJoo(O) = e / c o s  0), 

O~o(gO, 8, ~g) = (-- 1)"[4n/( 2 j + 1)]~rYj-"(O, ~p). 

A.4. VALUES OF dY,,(O) F O R j Z 4 ,  a----0 AND 1, AND j--m EVEN 

607 

j ra a = O  a =  1 

0 0 I 

1 1 - x / ~ r  sin 0 

2 0 ½(3 cos 2 8 - 1 )  

2 2 ½x/~ s in2 0 

3 1 -¼x/3  sin 8(5 cos  2 0 - 1 )  

3 3 - ¼ x / 5 s i n  3 0 

4 0 ] ( 3 5 c o s  4 0 - 3 0 c o s  2 0 + 3 )  

4 2 ~ / ] - 0  sin 2 0 (7 cos  2 O -  1) 

4 4 ~x/7-6  sin 4 0 

1 

½(1 + cos 8) 

+ x/~ s in  0 cos  0 

- ½  sin 0 (1 + c o s  O) 

~r(1 + c o s  8)(15 cos  2 8 -  10 cos  8 - 1 )  

~ r x / ~  sin 0 (1 + c o s  8) 

¼x/]  s in  0 cos  0 (7 cos  2 O -  3) 

- I x / 2  sin 8(1 + cos  8) (14  cos  2 O -  7 cos  O -  1) 

] ( x / ~ / 8 )  s in 3 0 (1 + c o s  8) 

A.5. ZEROES IN THE ROTATION MATRIX 

Be low a re  t a b u l a t e d ,  to  the  n ea r e s t  degree ,  ang les  a t  wh ich  the  r o t a t i o n  m a t r i c e s  

t a b u l a t e d  in  Sec t i on  D have  the  va lue  zero .  

j m a 0 fo r  d(O) = 0  

0 0 0 n o n e  

1 1 0 0 °, 180 ° 

1 I 1 180 ° 

2 0 0 55 °, 125 ° 

2 0 1 0 °, 90 °, 180 ° 

2 2 0 0 °, 180 ° 

2 2 1 0 °, 180 ° 

3 1 0 0 °, 63 ° , 117 ° , 180 ° 

3 1 1 41 °, 95 °, 180 ° 
3 3 0 0 o, 180 ° 

3 3 1 0 °, 180 ° 

4 0 0 30 ° , 70 ° , 110 °, 150 ° 
4 0 1 0 °, 49 ° , 90 ° , 131 ° , 180 ° 

4 2 0 0 °, 68 ° , 112 ° , 180 ° 

4 2 1 0 °, 52 ° , 97 ° , 180 ° 

4 4 0 0 °, 180 ° 

4 4 1 0 °, 180 ° 
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Appendix B 

THREE-DIMENSIONAL NUCLEAR DISINTEGRATION KINEMATICS 

When a nucleus disintegrates by particle emission or. fission following a nuclear 
reaction, the kinematical situation becomes considerably more complicated than in 
the case of a simple reaction. Consider a reaction of the type X(a, b)Y(c)Z, i.e., 
particle a bombards target X, yielding reaction particle b and excited nucleus Y, 
which subsequently disintegrates into breakup particle c and residual nucleus Z. 
Assume that the target position and beam direction are well defined and that particles 
b and c are detected in coincidence. The beam axis and the position of  detector b will 
define the reaction plane. I f  detector c lies in this plane the kinematical situation is 

. . . .  _ b ~ o _ , 2 _ _ _ _ ~  
% 

Fig. 3. Diagram illustrating the reaction X(a, b)Y(c) Z in the laboratory coordinate system. Veloc- 
ities v~, vb, and v~ lie in the x, y-plane while re, and vz do not. The directions of the latter must 

therefore be specified by the polar angles 0e and Oz, as well as the azimuthal angles ffc and ffz. 

two-dimensional and some simplification is possible. An extensive treatment of  this 
case has been given elsewhere 22). 

If, however, the particle detector c lies outside the reaction plane, three-dimensional 
kinematics must be employed. Fig. 3 shows this situation. In working out the kine- 
matical relationships of this problem, three systems must be considered: the laboratory 
system (lab), the overall centre-of-mass system (CMS), and. the centre-of- 
mass system of the recoiling excited nucleus Y (RCM). Angular coordinates 0 and q~ 
will be used to specify the polar and azimuthal coordinates in a given spherical polar 
coordinate system, lower-case letters indicating angles measured in the lab system 
and upper case those measured in the CMS or RCM system. The same convention 
will be applied to velocities v or Vand solid angles d o  or dO. The mass and laboratory 
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energy of the particles will be indicated by m and E. Subscripts will refer to particles 
in the reaction. The Q values Qr and Qb will refer to the reaction and breakup Q values. 
The forms of the equations used here were adopted because of their simplicity and 
symmetry and their adaptability to FORTRAN computer programmes. 

Since the derivation of two-dimensional reaction kinematical relationships has been 
given in a number of places 2s, 24) only the result will be given. First it is necessary to 
define the constant G: 

G = ( V b / / ) C M S )  2 - -  my [ Q r ( m v + m b ) + E a ( m v + m b _ m a ) ] "  (20) 
ma mb Ea 

Here VCMS is the lab velocity of the centre-of-mass of the system, and Vb is the 
CMS velocity of particle b. If Qr is negative it is possible that, for small values of E a, 
G can be less than zero; this indicates that there is insufficient CMS energy to produce 
the reaction, i.e., Ea is less than the threshold energy. If G is less than 1, two particle 
groups may be observed at the same lab angle ~b and these will have different 
laboratory energies E b and centre- of mass angles ~b. At laboraty angles ~b b such 
that sinZ~b > G, no particle groups will be observed. In terms of G, the lab energy 
E b and CMS angle ~b are 

-- m ' m b E a  (cos ~bb+~/G--sin2~b) 2, (21) 
Eb (my + rob) 2 

F sin ~b "l (22) 
# b  = (~b "~- arctg L___~/G---- ~-n2~iJ " 

The _ signs correspond to the double values mentioned above when G is less than 
1; only the positive root should be used for values of G which are greater than I. The 
solid angle of the detector must be corrected from the lab to the CMS. The ratio of 
the two solid angles is 

(,+ °°' 
sin3~-~---b --~G--]" (23) 

The lab and CMS angles and lab energy of the ,recoil nucleus Y are related to the 
above relations by 

g v = Ea--Eb+Qr,  (24) 

~v = arctg[sin ~b((mvEv/mbEb)  --sin 2 q~b)-*], (25) 

~Y = g - -  cb" (26) 

It should be noted that these equations will be double-valued whenever F~ and ~b 
are double-valued. 

Thus far only the reaction-plane kinematics arising from the initial nuclear reaction 
have been considered. Now the relationships given above can be used to calculate 
the remaining unknown quantities 0c, Ec, the RCM azimuthal angle ~o, and the solid 
angle correction (do~/dg2)o in the RCM system. It will be assumed that Qb is known 
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and that the RCM polar angle O c is specified. It may seem strange that a centre-of- 
mass angle is to be specified and a lab angle calculated, but sect. 5 of this paper showed 
the simplifications in the correlation function which can be achieved at certain fixed 
RCM polar angles (see eq. (17) for example). Since the lab polar angle 0o will be 
dependent on both the lab azimuthal angle ~b= and the RCM polar angle O=, it may be 
necessary to change 0 c to the appropriate calculated value with every change in ~= in 
order to maintain O~ at an essentially constant value. 

z z' 

I 

Fig. 4. Diagram illustrating the relation of the laboratory (lab) and recoil-centre-of-mass (RCM) 
coordinate systems. Particle RCM velocity V traces a sphere. The locus of  velocities with RCM polar 
angle O constant is a circle on this sphere. The lab angles 0 and ff depend on both RCM angles O and ~ .  

Fig. 4 illustrates the vectorial relationships between vy, the lab velocity of the RCM 
system, vo the lab velocity of the breakup Particle, and V~ the RCM velocity of the 
breakup particle. Since Vo is a constant in the RCM system, depending only on the 
breakup energy Qb and the mass of the breakup particle rn,, Vo will trace out a sphere 
as shown. The locus of velocities Vc having O, constant will trace a circle on this 
sphere. The X-axes shown correspond to the beam direction, while the Z-axes are the 
perpendiculars to the reaction plane; the unprimed axes are for the lab system and 
the primed axes for the RCM system. The projections of the three vectors on the 
three axes give the following relations: 

W cos ~y + Vo sin Oc cos ~c = vc sin O, cos ~b,, 

vv sin q~y+ V~ sin O= sin ~ = vc sin O, sin 4~, 

1I= cos O~ = v= cos 0=. 

(27x) 

(27y) 

(27z) 
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As in the reaction case, there is a constant which depends on the Q value of the 
reaction and plays an important part in the kinematical relationships. This constant 
will be called F; is is defined by 

F = (Vc/vv) 2 = m,  [ Q b ( m z + m c ) + E v ( m ~ + m _ m v ) ]  
my mc Ev 

(mz Qb/m~ Ev), when Qb << 931 MeV. (28) 

From (27x) and (27y) the relation for ~o can be obtained: 

• ~ = ~b~+arctg[(F sin 2 0 o - s i n  2 (~bo-~v)) -½ s in (~ -~v) ] .  (29) 

When F sin 2 0  c is less than 1, ~o will be double valued, in analogy with (22). 
The relation which gives the lab polar angle 0~ is obtained by eliminating the first 

term in (27x) and (27y) and then dividing through by (27z): 

0 = arctg[tg Oo sin(~c-~by)/sin(q~ c-~v)] .  (30) 

The lab energy Ec of the breakup particle and the solid angle correction (dto/dfl)KcM 
could be derived from eqs. (27), but there is a simpler way of obtaining these quanti- 
ties. Eqs. (21)-(26) were derived assuming a reaction of the form X(a, b)Y; now if 
this reaction is replaced by one of the form 0(Y, c)Z, where the 0 indicates that no 
target particle is involved, then the desired relationships can be obtained by simply 
changing the subscripts of the appropriate equations. However, one must also sub- 
stitute F for G and Qb for Q, and note that the angle ~ which is the laboratory angle 
between the "beam" direction and the "reaction-particle" direction, i.e., between the 
directions of motion of particle Y and particle c, is given by the spherical trigono- 
metric relationship: 

cos ~fo = sin 0c cos(~b,-~by). (31) 

Replacing ~b b with this angle in (21-6) gives: 

my m~ Ey (cos W~ + x/F + cos 2 ~,  - -  1 )  2, (32) 
E, = (m, + m~) 2 

( d ~ ) R c u -  sin3~b~ (1 + F-~r c°s ~ ) '  (33) 
sin3~c 

E, = Ey + Qb - -  Ec, (34) 

dp~ = arctg[((mzEz/rncE¢)- sin 2 ~bc) -½ sin ~b~], (35) 

¢ ,  = n - ¢ ~ .  (36) 

As before, i fF i s  less than 1 there will be two particle groups observed when sin 2 ~v¢ 
is less than F and no particles observed when sin 2 go is greater than F. When there 
are two groups the + sign in (29) and (32) should be used; when there is only one 
group only the + sign is meaningful. 
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