From personal to mass transit

Prof. em. Ingmar Andreasson ingmar@logistikcentrum.se

My 43 years in transportation

- Transit network planning VIPS
- Taxi fleet management Taxi80
- VP, Marketing director Volvo Bus Corp.
- Multi-discipline PRT research Chalmers
- Road traffic research KTH Royal Inst of Tech
- 5 PRT patents
- VP, Advanced Transit Association

Outline

- Stretching the capacity of ATNs
- Advanced ride-sharing strategies
- Vehicle coupling and decoupling
- Simulation modeling
- => Mass capacity with small vehicles on demand

A challenging application

- Dense urban area in California
- Very large employers
- Severe highway congestion
- Encouraging non-car modes
- Transfers to ATN from Train and LRT
- Connecting buildings

Contract with PRT Consulting Ltd

Legend

Station28 mph main guideway22 mph main guideway22 mph feeder guideway(with slowing at stations)

Tentative design

- 50 stations
- 48 kms (30 miles) guideway (6 % double)
- 54 intersections (4 bi-level)
- Speeds 36 and 45 kph (22-28 mph)
- Headway 3 secs (as certified)
- 910 vehicles with 6-seats

Morning peak hour demand

- 30 % of trips from 3 transfer stations
- 400 passengers from a single train
- 50 destinations
- How much can you handle?

Train / PRT station

• Length of train = 64 podcars

Morning peak demand pattern

Personal Rapid Transit

- Network can handle 910 vehicles
- ...with 3 second headways
- Average 1.5 passengers per vehicle
- Can only carry 3,200 pph
- 2.6 minutes average wait

Ride-matching at departure

- System knows requests from station
- First passenger determines destination
- Destination posted on or over vehicle
- Vehicle assigned when enough load (5 of 6)
- ... or after max holding (1 min)

Ride-sharing morning

- 7 % of relations have 60 % of all trips
- Apply in relations with >1 party per minute
- 49 % of passengers matched
- Average load 1.5 –> 3.4 passengers
- 3,200 –> 9,900 passengers carried
- 4.4 minutes waiting

Sharing to 2 destinations

- First acceptable 2nd destination (<20 % detour)
- 28 % of departures serve 2 destinations
- 49 -> 57 % of passengers matched
- Vehicle load 3.4 -> 4.4
- 9,900 –> 11,600 passengers carried
- 4.4 -> 3.9 mins waiting

Second destination before or after

Detours within 20 %

Allow boarding to same destination

- When stopped to drop off
- Waiting passengers to same destination
- Destination sign over vehicle

Adding a third destination

• Before, between or after

Sharing to 3 destinations

- 8 % of departures for 3 stops
- Vehicle load 4.4 -> 4.5
- 11,600 –> 11,800 passengers carried
- 3.9 -> 3.6 mins waiting

Evening peak more challenging

- Many origins with few boarding passengers
- Less opportunities for matching
- Sharing applied for 14 % of trips (vs 58 %)

Ride-sharing morning vs evening

58 % sharing

14 % sharing

Matching many-to-few

- Multiple origins to common destination (transfers)
- First passengers determine destinations and route
- Stopping en route to pick up for same destinations

Stop en route to pick up

- Route fixed to one or two destinations
- Pick up passengers for same destinations
- No passenger makes more than 2 extra stops
- NOT line-haul flexible route, on demand

Stop to pick up (evening)

- Picking up 1,850 passengers en route
- 11,600 passengers total
- 0.3 extra stops per passenger
- 5.5 passengers per vehicle
- All vehicles full (6) on max link
- 4.5 mins wait
- +5 % ride time

Full vehicles to destination (evening)

Standing passengers?

- Vehicle for 6 seated + 6 standing
- Limited braking => double headway
- Same capacity
- Longer station ramps

Same capacity without standees

Can serve 2 destinations non-stop

Vehicle pairs can split safely at speed

- Can serve different destinations
- More total load with two possible destinations
- Each vehicle goes non-stop

Coupled vehicles

- Couple in stations decouple in diverges
- Safe distance between couples
- Average consort 1.3 vehicles
- 11,600 -> 14,900 passengers
- 4.5 -> 2.0 mins wait

Electronic or mechanical coupling

Larger vehicle?

- 24 passengers including standees
- 6 sec headway
- Couple 2 x 6 seated has same capacity
- ...and can split up en route

Coupled vehicles better than big

- Can serve 4 destinations non-stop
- All passengers seated

Network high/low speed + train

Animation 10 x real speed

14,400 pph morning (6,900 on link)

910 vehicles evening (2,000 vph)

Capacity x 5 and less waiting

Strategy	Morning peak	Evening peak
	Pass/h / Wait-mins	Pass/h / Wait-mins
True PRT	3,200 / 2.6	<mark>3,000 / 3.5</mark>
Ridesharing one to one	9,900 / 4.4	8,300 / 6.5
Ridesharing one to two	11,600 / 3.9	9,900 / 5.0
Ridesharing one to three	11,800 / 3.6	10,000 / 4.6
Sharing and stopping to pick up	12,000 / 3.1	11,600 / 4.5
Sharing, stopping and coupling	14,400 / 2.9	14,900 / 2.0

Improvements by strategy (am/pm)

Results with combined strategies

	Morning peak hour	Evening peak hour
Vehicle fleet	910	910
Passenger trips	14,400	<mark>14,900</mark>
Average load	4.7 of 6	<mark>4.7 of 6</mark> (78 %)
Departures for 2 and 3 stops	25+7 %	23+4 %
Extra stops per passenger	0.30	0.30
Average wait	2.9 minutes	2.0 minutes
Average ride including stops	7.9 minutes	8.0 minutes
Maximum vehicle link flow	1,950 vph	2,000 vph (1.7 / 3 sec
Maximum passenger link flow	<mark>6,900</mark> pph	6,400 pph
Fleet running with passengers	72 %	<mark>85 %</mark>

Line-haul for similar capacity

- Stopping on-line => double travel time
- One line cannot serve all (50) stations
- Minimum headway 90 secs (on-line)
- Needs to load 170 for link flow 6,900 pphpd
- Off-line stations is key

170 pass / 90 sec = 6,900 pph

6+6 pass / 3 sec = 14,400 pph (case 6,900)

Conclusions

- Apply ride-sharing and pick-ups during peaks
- Can serve bursts of (400) transferring passengers
- Pair-coupled vehicles can handle mass transit flows
 6,900 pphpd on link, 14,900 in network
- Not Personal during peak, but very Productive
- Capacity as Mass Transit
- ...plus networked, fast and on demand

