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Carrier and Bit Synchronization  in  Data  Communication- 
A Tutorial Review 

L. E. FRANKS, FELLOW.  IEEE 

Absrmcr-This paper  examines the problems of  carrier  phase 
estimation  and  symbol timing estimation for carrier-type  synchronous 
digital  data  signals, with tutorial  objectives  foremost. Carrier phase 
recovery  for  suppressed-carrier  versions  of  double sideband (DSB), 
vestigial  sideband (VSB), and  quadrature  amplitude modulation 
(QAM) signal  formats  is  considered  first. Then the problem of symbol 
timing  recovery  for a baseband pulse-amplitude modulation (PAM) 
signal is examined.  Timing  recovery  circuits based on elementary 
statistical  properties  are  discussed  as well as timing recovery based on 
maximum-likelihood  estimation  theory. A relatively simple  approach 
to  evaluation  of  timing  recovery  circuit performance in terms of  rms 
jitter  of  the  timing  parameters  is  presented. 

I 
I. INTRODUCTION 

N digital data communication there is a hierarchy of syn- 
chronization problems to  be considered. First, assuming 

that a carrier-type system is  involved, there is the problem of 
carrier synchronization which concerns the generation of a 
reference carrier with a phase closely matching that of the  data 
signal. This reference carrier is  used at  the  data receiver to  per- 
form a coherent  demodulation  operation, creating a baseband 
data signal. Next comes the problem of synchronizing a receiver 
clock with the baseband data-symbol sequence. This is com- 
monly called bit synchronization, even when the symbol alpha- 
bet happens not  to  be binary. 

Depending on the  type of system under  consideration, 
problems of word-, frame-, and packet-synchronization will be 
encountered further  down  the  hierarchy. A feature  that distin- 
guishes the  latter problems from  those of carrier and  bit syn- 
chronization is that  they  are usually solved by means of special 
design of  the message format, involving the repetitive insertion 
of bits  or words into  the  data sequence solely for synchroniza- 
tion purposes. On the  other  hand,  it is desirable that carrier 
and  bit  synchronization be  effected  without multiplexing spe- 
cial timing signals onto  the  data signal, which would use up a 
portion of the available channel capacity. Only timing recov- 
ery  problems  of  this type are discussed in  this paper. This 
excludes those systems wherein the  transmitted signal contains 
an  unmodulated component  of sinusoidal carrier (such  as with 
“on-off’ keying).  When an  unmodulated component  or  pilot 
is present, the standard  approach to  carrier synchronization is 
to use a phase-locked loop (PLL) which locks  onto  the carrier 
component,  and has a narrow  enough loop bandwidth so as 
not to  be excessively perturbed by  the sideband components 
of the signal. There is a vast literature  on  the performance and 
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design of  the PLL and  there  are several textbooks dealing with 
synchronous  communication systems which treat  the  PLL in 
great detail [ l]  -[SI. Although we consider only suppressed- 
carrier signal formats  here, the PLL material is still relevant 
since these devices are often used  as component parts of  the 
overall  phase  recovery system. 

For  modulation  formats which exhibit a high bandwidth 
efficiency, i.e., which have a large “bits per cycle” figure of 
merit, we find  the accuracy requirements on carrier and  bit 
synchronization increasingly  severe. Unfortunately, it is  also 
in these high-efficiency systems that we find  it most difficult 
to  extract  accurate carrier phase and symbol  timing  informa- 
tion  by means of simple operations  performed on  the received 
signal. The pressure to develop higher efficiency data transmis- 
sion has led to a dramatically increased interest  in timing recov- 
ery  problems and,  in particular, in  the  ultimate performance 
that can be achieved with optimal recovery  schemes. 

We begin our review of carrier synchronization problems 
with a brief discussion of  the major types of modulation  for- 
mat. In each case  (DSB,  VSB, or QAM), we assume coherent 
demodulation  whereby the received  signal  is multiplied by a 
locally generated reference carrier and  the product is  passed 
through a low-pass filter. We can get some idea of the phase 
accuracy, or degree of coherency,  requirements  for the various 
modulation  formats by examining the expressions for the 
coherent detector  output, assuming a noise-free input. Let us 
assume that  the message  signal, say, a(t), is incorporated by 
the  modulation scheme into  the complex envelope @(t) of  the 
carrier  signal.’ 

v(t) = Re [Nt> exp ( i o )  exp 0’2rf0t)l (1) 

and  the reference carrier r(t) is characterized by a constant 
complex envelope 

r(t) = Re [exp 0;) exp (j2rfot)] . (2)  

From (A-8), the  output  of  the coherent  detector is 

z1 (f) = 3 Re [p(t) exp (je - ji)] . (3) 

For  the case of DSB modulation, we  have @(t) = a(t) 4- 
je, sf z l ( t )  i s  simply proportional to  a(t). The phase error 
8 - 8 in the reference carrier has  only a second-order  effect 

See  the  Appendix for definitions  and  basic  relations  concerning 
complex  envelope  representation of signals. 
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on detector  performance. The only loss is that phase error 
causes a  reduction,  proportional to cos’ (6 - b ) ,  insignal- 
to-noise  ratio at  the detector output when additive noise  is 
present on  the received signal. 

For VSB modulation, however, phase error  produces  a 
more severe distortion.  In  this case P(t) = a(t) + jZ(t), where 
Z ( t )  is related to a(t) by  a time-invariant fdtering operation 
which causes a  cancellation  of  a  major  portion of one  of  the 
sidebands.  In the limiting case of  complete  cancellation  of a 
sideband (SSB),  we  have Z( t )  = ;(t), the Hilbert transform  of 
a(t) [ 6 ] .  The  coherent  detector output (3)  for the VSB  signal 
is 

z1 (t) = 3 a(t> COS (6 - 4) - 3 y t )  sin (6 - 6) (4) 

and the second  term  in (4) introduces  an  interference called 
quadrature distortion when # 6. As Z(t) has roughly the 
same  power level as a(t), a  relatively small phase error  must  be 
maintained  for  low  distortion, e.g., about  0.032  radian  error 
for  a  30 dB signal-to-distortion  ratio. 

In the QAM case, two superimposed DSB  signals at  the 
same carrier  frequency  are  employed by making P(t) = a(t) + 
jb(t), where a(t) and b(t) are two separate, possibly independ- 
ent, message  signals. A dual  coherent  detector, using a  refer- 
ence  carrier  and  its n/2 phase-shifted  version,  separates the 
received signal into its.  in-phase (Z) and  quadrature (Q) com- 
ponents. Again considering  only the noise-free case, these  com- 
ponents  are 

cr(t) = 3 a(t) cos (6 - 6) - 3 b(t)  sin (6 - 6) 

cQ(t) = 3 b(t) cos (6 - 4) + 4 a(t) sin (6 - 6). ( 5 )  

From (5) it is clear that t$ # 6 introduces  a crosstalk interfer- 
ence into  the I and Q channels. As a(t) and b(t)  can  be  expec- 
ted to  be at similar power levels, the phase accuracy  require- 
ments  for QAM are  high  compared to  straight DSB modula- 
tion. 

From the previous discussion we see that  the price  for the 
approximate  doubling  of  bandwidth  efficiency  in VSB or 
QAM, relative to  DSB,  is a  greatly  increased  sensitivity to 
phase error.  The  problem is compounded by  the  fact  that car- 
rier phase recovery is much more  difficult  for VSB and QAM, 
compared to DSB. 

11. CARRIER PHASE RECOVERY 

Before  examining  specific  carrier recovery circuits  for the 
suppressed-carrier  format, it is helpful to  ask, “What proper- 
ties  must the carrier signal y(t)  possess in order that  operations 
on y( t )  will produce  a  good  estimate of  the phase parameter 
e?” A general answer to  this  question lies in  the cyclostation- 
ary nature  of  the y( t )  process.’ A cyclostationary process has 
statistical moments which  are  periodic in  time,  rather  than 
constant as in the case of  stationary processes [2], [ 6 ] ,  [71. 
TO  a large extent, synchronization  capability  can be character- 

2 In [ 21, these processes are called periodic nonstutionary. 

ized by the lowest-order  moments  of the process, such as the 
mean  and  autocorrelation.  The y( t )  process is  said to  be cycle- 
stationary in  the wide sense if Eb( t ) J  and kyv(t + 7 ,  t )  = 
E b ( t  + T)Y(t)] are both periodic  functions  of t. A process 
modeled by (1) is typically  cyclostationary  with  a  period of 
l/fo or 1/2f0. The  statistical moments  of  this process depend 
upon the value of  the phase parameter 6 and  it is  not  surpris- 
ing that efficient phase estimation  procedures are similar to  
moment estimation  procedures.  It is important  to note  here 
that we are regarding 6 as an  unknown but  nonrandom param- 
eter. If instead we regarded 6 as a  random parameter  uni- 
formly  distributed over a  2n interval, then  the y(t)  process 
would  typically be  stationary,  not cyclostationary. 

A general property  of  cyclostationary processes is that 
there  may  be  a  correlation  between  components  in  different 
frequency  bands, in contrast to  the situation  for  stationary 
processes [8] . For  carrier-type signals, the significance lies  in 
the correlation  between message components  centered  around 
the carrier frequency (+fo) and the image components  around 
(-fo). This correlation is characterized by  the cross-correlation 
function. kpp*(7) = E[P(t + 7)P(t)] for  a y(t)  process as in (1) 
when p(t) is  a  stationary p r o ~ e s s . ~  

Considering  first the DSB case with P(t) = a(t) + j 6 ,  and 
using (A-10) we have 

krr(t + 7 ,  t )  = 3 Re [ k , , ( ~ )  exp O’277f0dl 

+ 3 Re [kaa(7)  exp (j477fot + j2nh7 +j26)] 

(6) 

where the second term  in (6) exhibits the periodicity in t that 
makes y( t )  a  cyclostationary  process. 

We are assuming that y(t)  contains  no  periodic  components. 
Consider what  happens,  however,  when y( t )  is  passed through 
a square-law device. We see immediately  from (6) that  the  out- 
put  of  the squarer  has  a  periodic  mean value, since 

E[Y2(t)l = k,,(t, t> 

= 3 kau(0) + kaa(0) Re [exp  (j26+j4nfor)J. (7) 

If the squarer output ‘is passed through  a  bandpass  fdter  with 
transfer  function H ( f )  as shown in Fig. 1, and if H(f)  has  a  uni- 
ty-gain  passband in  the vicinity  of f = 2f0, then  the mean 
value of  the filter output is  a  sinusoid  with  frequency  2f0, 
phase 26,  and  amplitude + E [ a 2 ( t ) ] .  In thissense,  the squarer 
has  produced  a  periodic component from the y(t)  signal. 

It is often  stated  that  the effect  of the squarer is to  produce 
a  discrete component (a line  at 2f0) in the  spectrum  of  its  out- 
put signal. This statement  lacks  precision  and  can  lead to seri- 
ous  misinterpretations  because y’(t) is not  a  stationary  process, 
so the usual  spectral  density  concept  has  no  meaning. A 
stationary process can  be  dpived  fromy2(t)  by phase  random- 
izing [ 6 ] ,  but  then  the relevance to  carrier phase recovery is 
lost  because the discrete component has  a  completely  indeter- 
minate  phase. 

3 Despite its appearance, this is not an autocorrelation function, due 
to the definition of autocorrelation for complex processes; see (A-1 1). 
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Squarer PLL BpF(2fo) Timing wove 

H ( f )  

Fig. 1. Timing  recovery  circuit. 

The output of the bandpass  filter  in Fig. 1 can be  used direc- 
tly to generate  a  reference  carrier. Assuming that Hcf) com- 
pletely suppresses the low-frequency  terms [see (A-8)] the fil- 
ter  output is the reference  waveform 

w( t )  = 4 Re { [ w B p2 ] (t) exp ( i 2 e )  exp 0'47rfo t)) (8) 

where the convolution  product [w B p 2 ]  represents the  filter- 
ing action of H(J) in  terms  of  its low-pass equivalent in 
(A-5). For the DSB case, p2( t )  = a2( t )  is real and o(t) is real4 
if Zlcf) has  a  symmetric  response about 2f0.  Then the phase of 
the  reference waveform is 20 and the amplitude  of the refer- 
ence waveform fluctuates slowly [depending on the bandwidth 
of H(J)] .  The reference  carrier can be obtained by passing w(t )  
through an infinite-gain  clipper  which removes the amplitude 
fluctuations. The square wave from the clipper can drive a  fre- 
quency divider circuit  which halves the frequency  and phase. 
Alternatively, the bandpass  filter output can be  tracked by a 
PLL and the PLL oscillator output passed through  the  fre- 
quency-divider  circuit. 

There is another  tracking  loop  arrangement, called the 
Costas loop, where the  voltage-controlled  oscillator (VCO) 
operates  directly at f o .  We digress momentarily to describe the 
Costas loop and to point out  that it is equivalent to  the squarer 
followed by a PLL [ l ]  -[3]. The equivalence is established by 
noting that  the  inputs to  the loop  filters in  the  two configura- 
tions  shown  in Fig. 2 are  identical. In the PLL quiescent  lock 
condition,  the VCO output is in  quadrature  with  the  input sig- 
nal so we introduce  a n/2 phase shift into  the VCO in the con- 
figurations  of Fig. 2.. Then using (A-8) to get the  output  of  the 
multiplier/low-pass  filter  combinations, we  see that  the  input 
to  the loop  filter is 

V(t) = + Re [A2p2(t) exp 0'26 - j28 -jr/2)] (9) 

in both configurations if the amplitude  of the VCO output is 
taken as f A' in the squarer/PLL  configuration,  and  taken as 
A in the Costas loop. 

Going back to (8), we see that phase recovery is perfect  if 
[w 0 p 2 ]  is real. Assuming w(t) real, a phase error will result 
only if a  quadrature  component [relative to p2 ( t ) ]  appears at 
the  output  of  the squarer. This points out  the  error, from  a 
different  viewpoint,  of using the phase randomized  spectrum 
of the squarer output  to analyze the phase recovery perform- 
ance because the spectrum  approach  obliterates the distinction 
between I and Q components.  For  the DSB case, a  quadrature 
component will appear at  the squarer output only  if  there is a 
quadrature  component  of  interference  added to  the  input sig- 
nal y(t). We can demonstrate  this  effect by considering the 

4 A real w(t) corresponds to the case  where  the cross-coupling  paths 
between  input and output  [and Q components in Fig. 10 are absent. If 
the  bandpass function H(n does not exhibit  the  symmetrical  amplitude 
response  and  antisymmetrical phase response  about 2fo for a real w(t), 
then there simply is a fwed phase offset  introduced  by  the bandpass 
filter. 

I 

(a) 

(b) 
Fig. 2. Carrier phase  tracking loops. (a) SquarerlPLL (b) Costas loop. 

input signal to  be z( t )  = y( t )  + n(t) where n(t) is white noise 
with  a  double-sided  spectral  density  of No W/Hz. We can  rep- 
resent n(t) by the complex  envelope, [uI(t) + juQ(t)]  exp 0'6) 
where,  from (A-1 5) the I and Q noise components relative to a 
phase 6 are  uncorrelated  and have a  spectral  density  of u V o .  
The resulting phase of the reference waveform (8) is 

We can approximate the phase error @I = 0 - 0 (also called 
phase jitter because 8 is a  quantity  that fluctuates  with  time) 
by neglecting the noise X noise term  in  the  numerator  and 
both signal X noise and noise X noise terms  in the denomina- 
tor in (10). Furthermore, we replace w C3 p2 by  its  expected 
value  (averaging  over the message process) and use the  tan-' 
x % x approximation. With all these  simplifications,  which  are 
valid at sufficiently high signal-to-noise ratio  and  with  suffici- 
ently  narrow-band H O ,  it is easy to .derive an expression  for 
the variance of the phase jitter. 

var @I = (2NoB)S- ' (1 la) 

= (5)-' ('w ) 
where 

00 m 

B G  ~ w l n l t ) 1 2 d f =  4 I H ( n I 2 d f  

is the noise bandwidth of  the  bandpass  filter, recalling that we 
have set n(0) = 1. The message  signal power is S = E[a2 (t)] 
and  for the second version of  the  jitter formula (1 1 b) we  have 
assumed a signal bandwidth  of W Hz and have defined  a noise 
power over this  band  of N = 2N0 W. This allows the satisfying 
physical interpretation  of  jitter variance being inversely pro- 
portional to signal-to-noise  ratio  and  directly  proportional to 
the bandwidth  ratio of the phase recovery circuit  and the mes- 
sage  signal. For  the smaller signal-to-noise  ratios,  the  accuracy 
and  convenience  of  the  expression can be maintained by incor- 
porating  a  correction  factor  known as the squaring loss [3] . 
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When the signal itself carries  a significant quadrature com- 
ponent, as in the case of the VSB signal, there will be  a quad- 
rature  component  at  the squarer output  that interferes  with 
the phase recovery operation even at high signal-to-noise ratios. 
h t  us  suppose that  the VSB signal  is obtained  by  filtering  a 
DSB signal with  a  bandpass  filter  with  a real transfer  function 
(no phase shift)  and  with  a  cutoff  in  the  vicinity of fo. The 
resulting  quadrature  component  for  the VSB signal  is Z(t)  = 
[PQ @ a] ( t )  and p ~ ( t )  is  derived from the low-pass equivalent 
transfer  function  for the bandpass filter  in  accordance  with 
(A-7). The real transfer  function  condition makes p Q ( t )  an 
odd  function of  time,  which also makes the cross-correlation 
function  for a(t) and Z(t) an odd  function. 

The  result is that,  for P(t) = a(t) + lZ(t), the  autocorre- 
lation  for  the VSB signal is 

kyy( t  + T, t )  = a Re [{k,,(~) + kzz(r) +j2ksiiT(~)} 

exp (j27rfo7)] + 4 Re [{k,,(~) - ~;;;T(T)} 

- exp (j47rfot + j271foT + j20)] . (1 2) 

Comparing  (12)  with  (6), we see that  the second,  cyclostation- 
ary,  term is much smaller for  the VSB case than  the DSB case 
since the  autocorrelation  functions  for a(t) and Z(t) differ  only 
to  the  extent  that some  of the low-frequency  components  in 
Z(t) are missing because of the VSB rolloff  characteristic. 
Although the  jitter performance will be  poorer, the phase 
recovery circuit in Fig. 1 can  still be used since the mean value 
of the reference waveform is  a  sinusoid  exhibiting the desired 
phase, but  with  an  amplitude which  is  proportional to  the dif- 
ference  in power levels in a(t) and Z(t). 

E[ w(t)] = 3 [k,,(O) - k;;(O)] Re [exp (j477f0t +i20)1. 

(1 3) 

However, it is not possible to  get  a very simple formula  for the 
variance  of phase jitter, as in (1 l), because the power spectral 
density  of the  quadrature  component  of P2 (t), which is pro- 
portional to a(t) Z(t), vanishes at f = 0, unlike in  the additive 
noise case. An accurate variance expression  must take  into 
account.  the particular  shape  of the 520 filtering  function as 
well as the shape  of the VSB rolloff  characteristic. 

Our examination  of phase recovery  for DS3 (with  additive 
noise)  and VSB modulation  formats  has  indicated that rms 
phase jitter can  be  made as small as desired by making the 
width  of 520 sufficiently  small.  The  corresponding  parameter 
in the case of  the tracking loop configuration is called the  loop 
bandwidth [3]. These results,  however,  are  for steady-state 
phase jitter since the signals at  the receiver input were 
presumed to extend  into  the  remote past.  The  difficulty  with  a 
very narrow phase recovery bandwidth is that excessive time is 
taken to get to  the steady-state  condition  when  a new signal’ 
process begins. This  time  interval is referred to as the acquisi- 
tion time of the recovery circuit  and  in  switched  communica- 
tion networks or polling  systems it is usually  very  important to 
keep  this  interval small, even at  the expense  of the larger 
steady-state phase jitter. One way to accommodate  the  conflict- 
ing objectives in designing a  carrier recovery circuit is to spe- 

cify  a minimum phase-recovery  bandwidth  and then adjust 
other  parameters  of the system to minimize the steady-state 
phase jitter. 

Another  problem  with  a very narrow-band  bandpass fdter is 
in the  inherent mistuning  sensitivity, where mistuning is a  result 
of  inaccuracies in filter element values or  a  result  of small inac- 
curacies or  drift  in the carrier frequency. This problem is 
avoided with  tracking  loop  configurations since they  lock  onto 
the carrier  frequency. One the  other  hand, tracking  loops have 
some  problems  also,  one  of the more  serious  being the “hang- 
up”  problem [9] whereby the nonlinear  nature  of the  loop 
can produce  some  greatly  prolonged  acquisition  times. 

Although we have modeled  the phase recovery problem in 
terms of a  constant  unknown  carrier  phase,  it  may be impor- 
tant in some situations to consider the  presence  of  fairly  rapid 
fluctuations  in  carrier phase (independent of the message 
process). Such  fluctuations are often called phase noise and if 
the spectral  density of these  fluctuations has a  greater  band- 
width  than  that of the  phase recovery circuits,  there is a  phase 
error  due to the  inability to track  the  carrier  phase. Phase error 
of this  type, even in  steady state, becomes larger as the  band- 
width of the recovery circuits decreases. 

Another  practical  consideration is a 7r-radian phase ambigu- 
ity in the phase recovery circuits we have been discussing. The 
result is a  polarity  ambiguity in  the  coherently demodulated 
signal. In many cases this  polarity  ambiguity is unimportant, 
but otherwise  some a priori knowledge about  the message  sig- 
nal will have to  be used to  resolve the ambiguity. 

For  a QAM signal with p(t) = a(t) + jb(t), where a(t) and 
b(t) are independent  zero-mean  stationary  processes,  we get 

kyy(f  + 7, t)  = +.Re [{~uu(T) + kbb(7)I exp 0’271fo7)l 

+ 3 Re [{k,,(7) - kbb(7)l  

- exp (j47rfot + j271fO7 +j20)] (14) 

and the  situation is very similar to  the VSB case (12). In this 
case where a(t) and b(t)  are  uncorrelated, the mean  reference 
waveform has the correct  phase, but  the  amplitude vanishes 
if the power levels in the I and Q channels  are  the same. 

E[w(t)l = 4 [k,,(O) - kbb(0)l  Re  [exp  U4nfot +j20)l .  

(1 5) 

Hence, unless the QAM format is intentionally  unbalanced,  the 
squaring  approach in Fig. 1 does not work. We briefly  examine 
what  happens  when the squarer  is  replaced by  a  fourth-power 
device in the recovery schemes we  have been  considering. 
From (I) ,  we can  obtain 

Y 4 ( t )  = Re [@(t) exp ( j h f o t  +j40)] 

+ 3 Re [ I P(t) 12p2(t) exp (j4.rrfot +j2e)] 

+ 5 I P(O 1 4 .  (16) 

Now  if  we use a  bandpass  filter  tuned to 4f0 which passes only 



FRANKS: CARRIER AND BIT SYNCHRONIZATION 

the  first  term in (16), then  the mean reference waveform at 
the  filter  output is 

E[ w(t)]  = + Re [ (3 - 3(2)’} exp (j8n& t + j 4 Q ]  (1 7) 

still assuming independent a(t) andb(t) and a balanced QAM 
format, i.e., kaa(0) = kbb(0) = a 2 .  Hence, a mean reference 
waveform exists even in  the balanced Q W  case if a fourth- 
power device  is  used.’ 

One very popular QAM format is quadriphase-shift keying 
(QPSK) where the standard carrier recovery technique is to  use 
a fourth-power device followed by a PLL  or to use an equiva- 
lent  “double” Costas loop  configuration  [3]. The QPSK for- 
mat, with independent data symbols,  can be regarded  as two 
independent binary phase-shift-keyed (BPSK)  signals in phase 
quadrature. In a nonbandlimited  situation  each BPSK signal 
can be regarded as DSB-AM where the message waveform has 
a rectangular shape characterized by a(t) = f 1. In this case, 
the complex envelope of the QPSK  signal  is characterized by 
P(t) = (f 1 t j)/* or P(t) = exp (j(n/4) + j(n/2)k) with k = 
0, 1,  2,  or 3. The result is that p4 ( t )  = -1 and the 4f0 com- 
ponent  in (16) is a pure sinusoid with  no  fluctuations  in 
either phase or amplitude. For PSK systems  with a larger alpha- 
bet of phase positions, the result of (17) cannot generally be 
used  as the I and Q components  are no longer independent. 
Analysis of the larger alphabet cases shows that higher-order 
nonlinearities are required  for successful phase recovery [3], 
[lo] . For any balanced QAM format, such as  QPSK, the phase 
recovery circuits discussed here give a n/2-radian phase ambig- 
uity. This problem is often handled by use of a differential 
PSK scheme, whereby the information is transmitted as a 
sequence of phase changes rather  than  absolute values of phase. 

111.  PAM TIMING RECOVERY 

The receiver synchronization  problem in baseband PAM 
transmission is to find  the  correct sampling instants  for  extract- 
ing a sequence of numerical values from  the received  signal. 
For a synchronous pulse sequence with a pulse rate  of 1/T, the 
sampler operates  synchronously at  the same rate  and  the  prob- 
lem is to determine the  correct sampling phase within a T- 
second interval. The  model for  the baseband PAM signal  is 

m 

x ( t )  = a&(t -kT- T) (18) 
k=-- 

where{ak}  is the message sequence and g(t)  is the signaling 
pulse. We want to make an  accurate  determination  of T ,  from 
operations  performed on x(t).  We assume that g(t) is so 
defined that  the best sampling instants are at t = k T  + T; 
k = 0, t 1, k 2, ... . The objective is to recover a close  replica 
of the message sequence {ak} in terms  of the sequence {hk = 
x(kT + +)}, assuming a normalization of g(0) = 1. In  the 
noise-free case, the  difference between ak and dk is due  to 
intersymbol  interference which can be minimized by proper 
shaping of the  data pulse g(t). With perfect timing (? = T), the 

- -  
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intersymbol interference is 

and  this  term can be made to  vanish for pulses satisfying the 
Nyquist criterion, i.e., g(nT) = 0 for n # 0. For bandlimited 
Nyquist pulses, the intersymbol  interference will not be zero 
when i # T, and if the  bandwidth is not significantly greater 
than  the Nyquist bandwidth (1/2T) the intersymbol  inter- 
ference can be  quite severe  even for small  values of timing 
error.  The  problem is  especially acute  for multilevel (non- 
binary)  data sequences where timing accuracy of  only a few 
percent  of  the symbol period is often required. 

Symbol timing recovery is remarkably similar in most 
respects to carrier phase recovery and we find  that similar 
signal  processing  will  yield suitable estimates of  the param- 
eter T. In the discussion to follow, we assume that {ak}  is a 
zero-mean stationary sequence with independent elements. 
The resulting PAM signal (18) is a zero-mean cyclostationary 
process, although there  are no periodic components present 
[61. The square of  the PAM signal does, however, possess a 
periodic mean value. 

Using the Poisson Sum Formula [ 6 ] ,  we can express (20) in 
the  more convenient form of a Fourier series  whose coefficients 
are given by  the  Fourier transform of g2(t) .  

where 

For high bandwidth efficiency, we are  often concerned with 
data pulses  whose bandwidth is at most equal to twice the 
Nyquist bandwidth.  Then I GCf) I = 0 for I f  I > 1/T and  there 
are  only  three  nonzero terms (l= 0, f 1) in (21). 

This result suggests the use of a timing recovery circuit of 
the same form as shown in Fig. 1, where now the bandpass fii- 
ter is tuned to  the symbol  rate, 1/T. Alternate zero crossings 
of w(t), a timing wave analogous to  the reference waveform in 
Section 11, are  used  as indications of the  correct sampling in- 
stants.  Letting H(l/T) = 1,  the mean timing wave  is a sinusoid 
with a phase of -2nr/T,  for a real GQ. 

a2 [ ( 2;t 2 3 1  
E[w(t)]  = - R e   A ,  exp j - - j -  . 

T (22) 

We see that  the zero crossings of the mean  timing wave are at a 
5 Unless o(t)  and b(r)  are Gaussian processes, for then a4 = 3(u*)2. fined time  offset (T/4)  relative to the desired sampling instants. 



This timing  offset can be  handled  by  counting logic in the 
clock  circuitry, or by designing H ( f )  to incorporate a n/2 
phase shift  at f = 1 IT. 

The  actual zero crossings of w(t)  fluctuate  about  the 
desired  sampling  instants because the timing wave depends on 
the  actual realization  of the  entire  data sequence.  Different 
zero crossings result  for  different  data  sequences  and  for  this 
reason the  fluctuation in  zero crossings is sometimes called 
pattern-dependent jitter to distinguish it from  jitter  produced 
by additive noise on the PAM signal. To evaluate the statistical 
nature  of  the  pattern-dependent  jitter, we need to calculate 
the variance of  the timing wave. This is a fairly  complicated 
expressioil  in  terms  of H y )  and Cy) but  it can be  evaluated 
numerically to  study  the effects of a  variety  of  parameters 
(bandwidth,  mistuning,  rolloff  shape,  etc.)  relating to data 
pulse shape  and the bandpass  filter  transfer  function [l 1 1  . For 
a  relatively  narrow-band real H y )  and real C(f) bandlimited as 
mentioned  previously, the variance expression  has the  form 

4n 

T 
var w(tj  = Co + Cl COS - (t - 7) (23) 

where Co 2 C1 > 0 are  constants  depending on Cy) and Hy) .  
The  cyclostationarity  of the timing wave  is apparent  from  this 
expression. As the  bandwidth of H y )  approaches  zero, the 
value of C1 approaches Co so that  the variance has  a  great 
fluctuation over one  symbol  period.  Note that  the minimum 
variance occurs  just at  the  instant of the mean  zero crossings, 
hence the  fluctuations in  zero crossings are  much less than 
would  be  expected  from  a  consideration  of the average vari- 
ance  of the timing wave  over a  symbol  period.  This again points 
out  the error  in disregarding the cyclostationary  nature  of the 
timing wav? process as, for example,  'in using the power spec- 
tral  density  of  the  squarer  output to  analyze the  jitter phe- 
nomenon. 

The  mean  timing wave (22) can be regarded as a  kind  of 
discriminator  characteristic or S-curve for  measuring the 
parameter 7. For the bandlimited case  we are discussing here, 
this 5'-curve  is just  a  sinusoid,  with  a  zero crossing at  the  true 
value of  the parameter.  Discrimination is enhanced by increas- 
ing the siope at  the zero crossing. As this slope is proportional 
to A 1, we can see ,how the shape  of the  data pulse g(t) affects 
timing  recovery.  From (21) we  see that  the value of A l  
depends on the  amount of  overlap  of the  functions Cy) and 
G(l /T  - f), and  hence it depends on the  amount  by which 
the  bandwidth of Cy) exceeds  the 1/2T Nyquist  bandwidth. 
With no excess bandwidth, A = 0 and this  method of  timing 
recovery fails. The  situation  improves  rapidly as the excess 
bandwidth  factor increases from 0 to  100 percent. With very 
large increases in  bandwidth  there  are  more  harmonic  compon- 
ents  in the mean  timing wave; and  its  zero crossing slope  can 
be  further  increased  without increasing signal level by proper 
phasing of  these  components. On the  other  hand,  there are 
systems where the spectral  distribution is such that  the frac- 
tional  amount  of  energy above 1/2T is very small. An impor- 
tant case is that  of (class IV) partial  response signaling where 
the pulse shape is chosen to  produce  a  spectral  null at 1/2T. 
This  spectral null in  combination  with  a  sharp  baseband  roll- 

Sompler 

Prefilter 

Fig. 3. Baseband PAM receiver with timing recovery. 

off characteristic can result  in very small  values of A l .  
Although the class IV partial  response  format  exhibits  a rel- 
atively high  tolerance to  timing  error [ 1 2 ] ,  it is likely that 
some  other  recovery  scheme may have to be  used.  Some  of 
the proposed schemes [13]  , [14] closely resemble the  data- 
aided  approach discussed in Section IV. 

Calculation  of the statistical  properties  of the actual  zero 
crossings of the timing wave  is difficult: A useful approxima- 
tion  can  be  obtained  by  locating  the  zero crossings by linear 
extrapolation using the mean  slope at  the mean  zero crossing. 
When this  approach is used, the expression  for  timing jitter 
variance becomes [ 1 1 1  

In order to  reduce  this  pattern-dependent  jitter,  there  is 
fortunately  an  attractive  alternative to  making the  bandwidth 
of H y )  very small, which  increases  acquisition  time in  the 
same manner as for  carrier phase recovery  circuits, or  to mak- 
ing the  bandwidth  of Cy) very large.  There  are symmetry 
conditions that can  be  imposed  upon Hcf) and Cy) that make 
C1 = Co in (24), resulting in nonfluctuating  zero crossings. 
These conditions  are  simply  that Cy) be  a  bandpass  charac- 
teristic  symmetric  about 1/2T, with  a.bandwidth  not  exceed- 
ing 1/2T, and H y )  be  symmetric  about 1/T. The symmetry in 
GCf) can  be  accomplished by prefiltering the PAM signal 
before it enters the squarer [ 1 1 1  , [ 1.51 . Since the timing recov- 
ery  path is distinct  from the  data signal path,  the prefdtering 
can be performed  without  influencing the  data signal equaliza- 
tion, as shown  in the baseband receiver configuration  of Fig. 3. 

Although we are dealing with  a  baseband signal process, it is 
interesting to  observe that  the timing jitter problem  can  be 
studied by means  of  complex envelopes and  decomposition 
into I and Q components, as in  the carrier phase recovery case 
[ 1 6 ] .  One way to  do this  is to  let y( t )  be the complex enve- 
lope  of g(t), relative to  a  frequency fo = 1/2T. This makes ref) 
bandlimited to  I f  I < 1/2T. Then,  taking T = 0 for  conven- 
ience, the  output  of  the squarer is 
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The  second  term in ( 2 5 )  can be disregarded  as not being  passed 
by H(t). The first term is expressed by  a complex  envelope rel- 
ative to fo = 1/T.  It is the quadrature  component (imaginary 
part) of  this  complex  envelope  that  produces  timing  jitter. 
This  component is 

k m  

where cI(t) and C Q ( ~ )  are the real and  imaginary parts of y(t). 
The  Fourier  transform  of (26), evaluated at f =  0, is 

where Mcf) = ak exp (--j2?rkTfl is the  transform  of the data 
sequence. The integral (27) vanishes because,  for  a real Ccf) 
i.e., a real I‘m, the integrand is an  odd  function.  The  situation 
is  similar to  the VSB carrier signal case, where the  spectrum of 
the  quadrature  component  at  the squarer output vanished at 
f = 0. We see here also that  the particular shape of H m  will 
have a  major  influence  when  calculating the  jitter variance 
because the spectrum of the jitter-producing  component goes 
to zero just  at  the  center  of  its passband. 

IV. MAXIMUM-LIKELIHOOD PARAMETER ESTIMATION 

The  foregoing carrier- and  bit-synchronization circuits were 
developed on a  rather  heuristic basis and a natural  question 
arises  as to how  much  improvement  in  parameter  estimation 
could  result’  from the choice s f  other circuit configurations 
or circuit parameters.  It seems natural to regard 8 and T as 
unknown but nonrandom  parameters  which suggests the maxi- 
mum-likelihood (ML) estimator  as the preferred  strategy [ 171 . 
Some  authors have  used the maximum a posteriori probability 
(MAP)  receiver by modeling 8 and 7 as random  parameters 
with specified a @ion’ probability  density  functions. However, 
in most  situations  the a priori knowledge about 8 is only  accur- 
ate to within  many carrier cycles, or  in the case of 7, to within 
many  symbol periods. As our  concern is with  estimation  mod- 
ulo 2n  for 8 or  modulo T for T ,  we would use a  “folded” ver- 
sion of  the a priori density  functions, resulting in  a nearly uni- 
form  distribution over the interval. In  this case, the ML 
approach  estimates and MAP estimates  would be essentially 
identical. We find that  the phase and  timing-recovery circuits 
based on the ML approach  may  not  be drastically different 
from the circuits already  considered.  In fact, under the proper 
conditions,  the circuits we have examined  can  be close approx- 
imations to ML estimators.  One  of the main  advantages of  the 
ML approach,’  in  addition to suggesting appropriate circuit 
configurations, is that simple  lower  bounds on jitter perform- 
ance  can  be  developed to  serve as benchmarks  for  evaluating 
performance of  the  actual recovery circuits employed. 

In this  section we begin  with  discussion of ML carrier phase 
recovery  with  a  rather  general  specification  of the message 
signal  process. We show that  the Costas loop,  or  the equiva- 

lent  squarer/BPF,  can  be designed to  closely approximate the 
ML phase estimator.  Then we present  a similar development 
for ML estimation of symbol  timing for  a baseband PAM sig- 
nal. We introduce the idea of using information  about  the  data 
sequence to aid the  timing recovery  process and we later  make 
comparisons to show the effectiveness of such  data-aided 
schemes. Extension of  the idea to  joint recovery  of both car- 
rier  phase and  symbol  timing  parameters is  discussed in Sec- 
tion V. 

To  formulate the problem  in  terms  of ML estimation, we 
require that  the receiver perform  operations on a  To-second 
record of  the received  signal, z(t)  = y( t ,  8) + n(t), to estimate 
the parameter 8, assumed essentially constant over the To  -sec- 
ond interval. This interval is called the observation interval and 
the To parameter  would  be  selected in accordance  with  acquis- 
ition  time  requirements.  Estimation  procedures  based on data 
from  a single observation interval will  be referred to as one- 
shot estimation. We find that  the one-shot ML estimators  lead 
to the simplest  methods  for  evaluating jitter performance. On 
the  other  hand,  the preferred  implementation  of  recovery cir- 
cuits is usually  in the  form  of tracking  loops  where the param- 
eter  estimates are being  continuously  updated.  Fortunately, it 
is a relatively simple  matter to relate the rms  one-shot  estima- 
tion error to  the steady-state  error  of the tracking loop and the 
loop  bandwidth is directly related to the To parameter. 

We shall assume that  the additive noise n(t) is  Gaussian and 
white  with  a  double-sided spectral density  of No W/Hz. Initi- 
ally we consider the  situation where y( t ,  8) is completely 
known  except for the parameter 0 .  The resulting likelihood 
function,  with  argument 6 which  can be regarded as a  trial 
estimate  of the parameter, is  given by 

The ML estimate is the value  of 0 which  minimizes the inte- 
gral in (28). This integral expresses the signal space  distance 
between  the  functions z(t)  and y (t, 8) defined on the  inter- 
val To [ 6 ] ,  [17]. Expanding the binomial term  in (28), we 
see that 

since z2 ( t )  is independent  of 8, and if 8 is a time shift or phase 
shift parameter, then  the integral of y2( t ,  8) over a relatively 
long To interval would have only  a small variation  with 8.  The 
first term in (29) is often called the correlation  between the 
received  signal z( t )  and  the reference signal y(t ,  8) so that  in 
this  “known-signal” case, the ML  receiver  is a  correlator,  and 
e’ is  varied so as to maximize the correlation. 

When y(t, 8) contains  random message parameters, the 
appropriate  likelihood  function  for  estimating 8 is obtained  by 
averaging L (&not In L(d)-over these message parameters. 
We shall illustrate the  method using the example of carrier 
phase estimation on a DSB signal where the modulating signal 
a(t) is a  zero-mean, Gaussian random  process  with  a  substanti- 
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ally flat  spectrum  bandlimited  to W Hz. Finding the expecta- 
tion of L(d)  with respect to the Gaussian message process can 
be  done  without great difficulty by making a Karhunen-Loeve 
expansion of the process to  give a series representation  with 
independent  coefficients  [18] . The result of  this averaging 
gives a  log-likelihood  function closely approximated  by 

A(8) = I [Re ~ ( t )  exp (-j8)] d t  
TO 

where a(t) is the complex  envelope,  relative to fo, of  the 
received signal. We ignore the second  integral  in (30) as it is 
independent  of 8. (30) suggests a  practical  implementation of 
the ML phase estimator. Consider a receiver structure  which 
produces the complex signal 

r t  

h(t) = a2(s) ds 4 p(t)  exp (j25(t)). 1- T o  

The integral  in  (31) is the convolution  product  of a2(t) and  a 
To-second  rectangle,  hence h(t) can be regarded as the com- 
plex  envelope  of the  output of the squarer/bandpass  filter  con- 
figuration  of Fig. 1.  In  this case, Hcf) corresponds to a sinc 
(TOO shape  centered at 2f0. Writing h(t) in  polar  form as 
shown  in (31), we  see that  the corresponding  term in (30) is 
maximized, at  any t ,  by choosing d = e@). In other  words, by 
suitably designing the shape  of the bandpass  transfer  function, 
the simple structure  of Fig. 1 is a ML phase estimator,  in  the 
sense that  the instantaneous  phase  of the timing wave output 
is the best  estimate  of the DSB carrier phase based on observa- 
tions over only the past To seconds. The phase jitter can be 
evaluated  approximately by  the same method leading to  (1 l), 
with  the result that 

v a r @ = -  =- 
ST0 WTo (32) 

where S = k,, (0) is the signal power and N = u V o  W is noise 
power over the signal band. 

The  tracking loop version of  this phase estimator  is devel- 
oped  by forming  a  loop er:or signal proportional to  the deriva- 
tive  of A with  respect to 8. Then, as the  loop  action  tends to 
drive the error signal to  zero, the resulting value of 4 should 
correspond to a  maximum  of A. Since the contro1 voltage u(t) 
for  a VCO normally  controls  frequency,  rather than phase, we 
suppress the integration in (30) and  let 

l a  

8 ae v(t) = - --r [Re a(t) exp (-j8)] 

= Q Re [a2 (t) exp ( 7 ’ 2 4  - jn /2)]  (33) 

which is the same control voltage that appears in  the Costas 
loop (9) and Fig. 2(b), with  the normalization, A = 1. If the 
VCO had a  voltage-controlled  phase,  rather than  frequency, we 
would include the To -second.integration  effect  by  means  of 
the  loop  filter. However, in  this case we simply  let Fer> = 1 
and rely on  the integration  inherent in the VCO. The param- 
eter To is related to  loop performance by adjusting the  loop 
gain factor M, which is proportional to  loop bandwidth, so 
that  the steady-state jitter variance for  the  loop is identical to  
(32) for the nontracking  implementation. 

For the DSB signal with  additive  noise, we have 

a(t) = [a( t )  + udt) +juQ(t ) ]  exp ($3) (34) 

where uI and UQ are the I and Q components  of noise relative 
to  the carrier phase .8. Letting the VCO  gain constant  be M 
(hertz/volt) so that &t) = 2.rrillu(t) and assuming a  high signal- 
to-noise  ratio so that  the second-order noise effects can be 
neglected,  a  linearized  loop  equation  for phase error, I#J = 
8 - 8, appears as 

The difficult  part  of solving this  equation to  get the  steady- 
state variance of @ is the second driving term where b(t)  & 
a2( t )  - S and @(t) are clearly not  independent.  It  turns out 
however, that if the  loop  bandwidth  parameter BL = # MS 
is sufficiently small compared to  signal bandwidth W, then 
this  term  can  be  neglected. The other  excitation  term uQa 
can be  treated as white noise with  a  spectral  density  of N O S ,  
and the steady-state variance of @ can  be  determined by con- 
ventional  frequency-domain  techniques. The result is 

and,  equating (36) and (32) we find that B, = l/nTo is the 
relation  sought  between  observation  interval  and  tracking loop 
bandwidth. 

Turning  now to ML tiAming recovery  for the baseband PAM 
signal, with i replacing 8 ,  and using (18)  for y(t, ?), the log- 
likelihood  function  for the case of  a  known signal (29) becomes 

where 

(3 7) 

It is possible to  use this  expression  directly  for  timing  recovery 
in a situation where a  relatively  long  sequence, say K ,  of  known 
symbols is transmitted as a preamble to the  actual message 
sequence. The receiver would  store the K-symbol  sequence  and 
attempt  to establish the correct  timing  before the end  of the 
preamble.  The idea can also  be used during message transmis- 
sion  if the symbols  are  digitized, so that  the receiver makes 
decisions as to  which of  the  finite number  of possible symbols 
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have been  transmitted.  The receiver  decisions are  then assumed 
to  be  correct,  at least for the purposes of  timing recovery. The 
bootstrap  type of  operation is referred to as decision-directed 
or data-aided timing recovery and  it has received extensive 
study  for  both  symbol timing and carrier phase  recovery [19] - 
[22]. In the following, we shall  use the  term “data-aided’’ to 
refer to  both modes of operation, i.e., the  start-up  mode where 
a known  data  sequence is  being transmitted  and  the  tracking 
mode where the  symbol  detector  output sequence  is used. 

For recovery strategies which  are not  data  aided, we need 
to average the likelihood function (37) over the random data 
variables.  If  we assume that  the {ak } are independent Gaus- 
sian random variables and also that  the  data pulses  have unit 
energy and  are  orthogonal over the To interval, i.e., 

then  the log-likelihood function is  given by 

, m  

(39) 

where the  qk are the same quantities defined in (37). Although 
the Gaussian density is obviously not  an  accurate model for 
digital data signals,  we want to  consider it here because it  pro- 
vides the  link between the ML estimators  and the estimators 
of Sections I1 and 111 based on statistical  moment properties. 
It is the Gaussian assumption that leads to  the square-law type 
of  nonlinearity. If we consider equiprobable  binary  data, for 
example, the corresponding log-likelihood function is [23] - 
~ 5 1  

and since In cash X *xz for small x, the square-law nonline- 
arity is near optimum  at  the lower signal-to-noise ratios. The 
log-likelihood function  for equiprobable  independent  multi- 
level data has also been derived [25], [ 2 6 ] .  When the Gaussian 
assumption is  used for  the  data,  it is  also  possible to consider 
correlated  data as well  as nonorthogonal pulses,  i.e., when (38) 
does not  hold.  Both  ofthese  effects  can be dealt wi;h by replac- 
ing the qk-sequence in (39) by a linear discrete-time filtered 
version of this sequence [27].  In summary,  we  find that recov- 
ery circuits based on  the Gaussian-distributed data assumption 
are somewhat simpler than  the  optimum circuits and  in most 
situations  the  jitter performance is not appreciably worse. We 
note  that  the  method  for evaluating rms jitter, presented in 
Section VI, does not depend on the particular kind  of  density 
function used to characterize the  data. 

When it comes to implementation of receivers  based on 
(37) and (39) for the data-aided (DA) or nondata-aided (NDA) 
strategies, we  usually resort to  an approximation which involves 
replacing the  infinite  sum  by a K-term  sum, where K T  = To,  
and replacing the  finite  integration interval by  an  infinite  inter- 
val. Then the approximate  implementable, log-likelihood func- 

tion in  the DA  case  is taken as 

where 
.- 

With this approximation, the integral is a convolution integral, 
and c k  can be interpreted as the sampled (at t = k T  -k ?) Out- 
put  of a matched  filter having the impulse response g(-t). The 
same approximation is used for  the NDA  case (39) and the 
orthogonality  condition (38) can be interpreted to mean that 
the matched fdter response to a single data pulse  is a pulse sat- 
isfying the Nyquist criterion. This approximation, which leads 
to relatively  simple implementations  for the recovery circuits, 
does introduce a degradation from  the idealized ML perform- 
ance, An interesting  interpretation  of  the  effect of the approx- 
imation is that it introduces a pattern-dependent component 
of jitter, as discussed in Section VI. 

For  tracking  loop implementation  of these timing recovery 
strategies, we  use a voltage-controlled clock (VCC) driven by 

a /- 

for the DA case, and 

* [ [l z(t)g(t - k T -  +) dt 1 (43) 

for  the NDA  case. The  K-term  summation is suppressed, being 
replaced by  the integration  action  of the VCC as in  the case of 
the Costas loop phase recovery circuit discussed  earlier.  Similar 
also  is the  relation between To and  the  loop bandwidth, the 
loop gain being adjusted so that  the  steady-state variance of 
timing jitter is the same as for one-shot estimation in a single 
observation interval. The result is  also BL = l/nTo [26]. The 
tracking loop configurations are evident from  inspection  of 
(42) and (43). 

One structure wdl serve for  both strategies by  incorporating 
a DA/NDA mode  switch as shown in Fig. 4. This could be quite 
useful in a system that uses the DA strategy on a message pre- 
amble, then switches to  the NDA strategy  when  the message 
symbols begin. Notice that  the NDA configuration is remark- 
ably like a Costas loop, which suggests the existence of an 
equivalent realization using a square-law  device.  This alterna- 
tive and equivalent form is shown in Fig. 5. The  corresponding 
implementation  of (40) for NDA recovery with binary data 
involves the same structure as shown in Fig. 4, except that a 
tanh(.) nonlinearity is incorporated into  the  upper  path of the 
NDA loop  [25]. 
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Fig. 6 .  Receiver implementation of the $k(d, +) test statistic. 

Fig. 4. ML baseband PAM timing recovery circuit. 
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Fig. 5. Alternative implementation of NDA baseband timing recovery. 

V. JOINT RECOVERY OF CARRIER  PHASE 
AND SYMBOL  TIMING 

When a  carrier  system,  such as VSBIPAM or QAMlPAh4  is 
used to transmit  a  digital  data signal, we have the possibility  of 
jointly  estimating the carrier phase and  symbol  timing  param- 
eter$  Such  a  strategy  certainly  cannot be worse than estimat- 
ing the parameters  individually and, in  some cases, join  esti- 
mation gives remarkable  improvements.  Some  authors have 
extended  the idea to  joint  estimation of the  data sequence  and 
the  two timing  parameters [28] - [ 3 0 ] .  We shall not consider 
this latter possibility  here, but shall  consider both DA and 
NDA joint parameter  estimation. Our conjecture is that,  in  the 
majority  of  applications, DA recovery  performance  differs 
little  from  that  of  joint estimation  of  data  and  timing  param- 
eters. 

We consider  first the QAM/PAM data signal case where we 
want to estimate 6 and 7 in 

- exp GO) exp (j2nfot) J (44) 

from receiver measurements on z(t)  = y( t )  + n(t) over a To- 
second  observation  interval,  The  implementable version of the 
log-likelihood  function  for the DA case  is 

where 

a(t)g(t - kT - i )  dt 1 
ol(t)h(t - kT - i )  d t  1 

Fig. 7. Data-aided QAM joint tracking loop for carrier  phase  and sym- 
bol timing. 

and a(t) is the complex  envelope of the received signal. The 
Qk quantities  are  interpreted as the sampled (at r = kT + 2) 
output of a  coherent  demodulator  (operating at a  phase e)  
whose input is a  bandpass  filtered version of the received 
signal. The receiver implementation for these  quantities is 
shown  in Fig. 6 ,  and  a similar implementation  would  pro- 
vide the $1, quantities. 

For the  joint tracking  loop the partial derivatives of A 
with  respect to 4 and i, without  theK-term  summation, are 
used to update  the VCO and VCC frequencies  once every T 
seconds.  For the normal QAM case we let h(t) = g(t) ?nd 
some  simplifications  result,  for then aifk/a8 = dk and agk/ae = 
-qk. The aqk/ai and aEda; quantities  are  obtained  by  differ- 
entiating the I and Q baseband signals before sampling. The 
complete  tracking loop implementation  for the DA case is 
shown  in Fig. 7.  

For  balanced QAMIPAM with  identical pulse shapes and 
statistically  identical  independent  data  in the I and Q channels, 
the NDA mode  of  recovery fails [271 because the NDA log- 
likelihood  function is 

I K - 1  

and  this is independent  of f? under the previous assumptions. 
Fortunately,  a simple modification  makes the NDA mode 
effective. This modification is h(t)  = g(t f T/2)  and the  format 
is called staggered QAM (SQAM). The implementation is sim- 
ilar, but somewhat  more  complex, to  that shown  in Fig. 7 
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Fig. 8. Energy spectral density for VSB data pulse. 

because additional  samplers  are  needed  for sampling at  both 
k T + i a n d k T + i k T / 2 .  

Considering now the one-dimensional VSBlPAM case, the 
loglikelihood  functions  are  the same as (45)  and  (46)  with the 
b k  and j& quantities  omitted,  and  with 

&(i, ;) = Re exp ( - id)  a(t)y * (t - k T  - ;) dt , [ 1 DA/NDA 

Fig. 9. One-dimensional joint tracking loop. 

matrix is diagonal so that  no coupling is required,  but  for VSB 
there  are  strong  off-diagonal  terms.  It  has  been  shown  [30] - 
[32]  that  loop convergence rates can be  substantially  improved 
by incorporating  this  coupling on  the  control signals. 

A block diagram for  the one-dimensional  joint  tracking 
loop is shown in Fig. 9.  A DAINDA mode  switch is shown in 
the diagram, but it  must be recognized that  the A-' coupling 
matrix is a  compromise value in  either  one or  both modes 
because the A matrix is quite  different  for the DA and NDA 
cases, as discussed in the  next section.  Another  practical  con- 
sideration is that  the configuration  of Fig. 9 can also be used 
for QAM and SQAM with  some  loss  in  performance. Here  we 
just  eliminate the F k  quantities in (45)  or  (46)  and use the 
matched BPF for  the  I-channel pulse, i.e., let y*(--t) =g(-t). 
The loss in performance will be  about  3 dB or  greater,  depend- 
ing on signal-to-noise  ratio  and on which  parameter is con- 
sidered, as there  are  some  cancellations  of  pattern-dependent 
jitter  in  the configuration  of Fig. 7  which  are not possible in 
that  of Fig. 9. 

VI. PERFORMANCE OF TIMING RECOVERY SCHEMES 
A convenient  approach to  evaluating timing recovery cir- 

cuit  performance, is to derive expressions  for  rms  phase-and 
timing-jitter  directly  from  (49),  or  its  one-dimensional  coun- 
terpart  for  individual  estimation  of 0 or r. For  these calcula- 
tions we assume B o  and ro are the  true values of the param- 
eters, so that  the left-hand side of  (49) gives the  jitter variables. 
The equation is linearized  in the sense that  the  jitter variables 
depend  linearly on  the receiver measurements x0 and K T .  As 
in all analyses of  this  type,  the  results  are  accurate if the  jitter 
is relatively small, which  in  this case generally means a  moder- 
ately  high  signal-to-noise  ratio  and  a  moderately long observa- 
tion interval. This approach  affords an effective means to 
study  jitter performance  with  respect to  the values of all sys- 
tem  parameters,  such as signal-to-noise  ratio, To (or K ) ,  excess 
bandwidth,  and pulse shape.  It also allows comparison of jitter 
performance  of the various  modulation  formats  and  evaluation 
of the DA strategy relative to  the NDA strategy. 

In (47), y(t)  = g(t) + j i ( t )  is the complex  envelope  of  a 
single, unit-amplitude  carrier  data pulse. The  orthogonality 
condition  corresponding to (38)  for the NDA  case can be 
satisfied by  a pulse whose energy  spectrum I FCf) I' has  a 
shape  of  the  form  shown  in Fig. 8, exhibiting  a  Nyquist-type 
of  symmetry in both  of  its rolloff regions. 

In contrast to  the QAM case, we find that  the VCO and 
VCC frequency-control voltages should be derived as linear 
combinations  of the partial derivatives of  with  respect to e* 
and i, i.e., there is a  coupling  between the parameter  estimates. 
To show  this, we consider the approximate  solution  for the 
one-shot  estimator based on a  Taylor series expansion of A 
about  trial values of eo and ro. If these values are sufficiently 
close to  the  true values, then we can take 9s refined  estimates, 
0 and T ~ ,  the solutions  of 

(48) 

where the subscripts  in  (48)  denote  partial derivatives. The 
solution of (48) is greatly simplified if the 2 X 2  matrix is 
replaced by  its,mean value, and  this is  valid at moderately  high 
signal-to-noise  ratio  and  moderately  long  observation intervals. 
Then we have a simple form  of  estimation given by 

(49) 

- 
where the  2 X 2  matrix A is the expected value of the matrix 
in (48). The A matrix can be regarded as a  generalization  of 
the A quantity  in  (22),  (24)  for  the  single-parameter recovery 
problem.  For the  joint tracking loop,  the VCO and VCC con- 
trol voltages are linear  combinations  of the A0 and AT quanti- 
ties  (without the K-term  summation) as characterized by  the 
inverse of  the A matrix. In the QAM and SQAM cases, the A 
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Another  important aspect that can be examined from the 
rms jitter calculations is the effect of the implementation 
approximations A + X and q k  -+ qk. Let us  take as an illustra- 
tive example the one-dimensional case of baseband timing 
recovery. For the implementable DA  case we get 

K -  1 

where 
m 

r(t) = g(s + t>g(s) ds 
-m 

and 
m 

D = -i;(O) = k2(t)  dt 

is the energy in  the  time derivative of a single data pulse. The 
notation m E K‘ in (50) means that  the sum is taken  for all 
k < 0 and 2 K, i.e., just  the  terms  not used in  the  other sum. 
The first term  in (50) is  seen to  vary  inversely with K;signal- 
to-noise  ratio,  and  the energy in g(t). From this  it is obvious 
that “sharp-edged’’  pulses can give excellent timing recovery 
performance. In fact,  the  entire  denominator  in  the first term 
can be  taken approximately as the expected value of the 
energy of the time-derivative of the received PAM signal  over 
the To -second observation interval. 

Another significant aspect of  the first term  in (SO) is that  it 
gives the entire  jitter variance  if A and q k  are used instead  of 
A and Gk. In other words, the second term  in (50) gives the 
additional  jitter variance resulting from  the practical imple- 
mentation considerations. This term does not depend on the 
noise  level and it can be regarded as the effect  of  the  pattern- 
dependent component  of  jitter. It varies  inversely with  K2 
since the  numerator is essentially a constant even for  moder- 
ately small  values of K. Thus  we see that if  severe requirements 
are placed on acquisition  time (small  K), then  the effect  of  this 
pattern-dependent term is apt to dominate. Otherwise, for lar- 
ger K ,  the first term may be  dominant  and  the  difference 
between  true ML estimation  and  its  implementable  approxima- 
tion  may  be negligible. 

Although the variance expressions are somewhat different, 
the same general conclusions about  the  two  types  of  jitter 
terms hold for  the NDA timing recovery case, and  for  joint 
timing  and carrier phase  recovery [26]. Another physical inter- 
pretation, in the case of carrier phase recovery, is as follows. 
There  are two random  interference  components  producing  jit- 
ter  in  the carrier phase tracking  loop;  one is due  to  the additive 
noise on  the  input signal, and  the  other  due  to  the message 
sidebands  of the carrier signal. It is primarily the  quadrature 
components  of these interferences  that cause the  jitter. The 
quandrature noise has a flat  spectrum about  the carrier fre- 
quency, so the  jitter variance due  to  this  interference should 
vary in direct  proportion  to  the  loop  bandwidth. The quadra- 

ture  data  dependent  interference  has a spectral null in  the vicin- 
ity of the carrier frequency, so we would expect jitter variance 
due  to  this  effect to increase faster than linearly with loop 
bandwidth. Hence, for a given signal-to-noise ratio,  and  for a 
large enough loop  bandwidth (rapid acquisition) we  would 
expect the pattern-dependent term to  dominate. 

The relative performance  of the  different modulation  for- 
mats is  governed primarily by  the size of the elements  of the 
A matrix. Also, the A matrix almost completely characterizes 
the difference in performance  of the DA and NDA strategies. 
For  example, in  the NDA/VSB  case, the A matrix elements 
contain  terms  proportional to  the integral of the  product of 
I and I r ( l / T  - j) I [26],  [27] . Thus the size of the 
terms  depends on  the  amount of overlap of the pulse energy 
spectrum  and its  frequency-translated version, and this depends 
on  the  amount  of excess bandwidth available. For  the staircase 
shape shown in Fig. 8, the term is directly  proportional to the 
excess bandwidth  factor E .  As a result,  the rms jitter has a I/E 
behavior and performance is unacceptable at very small excess 
bandwidth. On the  other  hand,  the A matrix  for DA/VSB has 
a completely  different  dependence on I‘m and it results in a 
finite  jitter variance at E = 0 and a much slower rate  of decrease 
for increasing E .  In fact,  with excess bandwidths over about 30 
percent,  the  difference between DA and NDA jitter is usually 
small enough so that  it may not be  worth  the  additional circuit 
complexity to implement the DA  strategy  [26] . 

Finally,  the variance expressions can be used to  compare 
performance with  different pulse shapes or to solve for  opti- 
mum pulse  shapes. There is no universally optimal pulse shape 
to cover the variety of cases  discussed here.  For  one  thing, we 
can  see from (SO) that  the optimal pulse shape can depend on 
the signal-to-noise ratio. It is found, however, that  the staircase, 
or “double-jump,’’ rolloff picturedin Fig. 8 is optimal in cer- 
tain cases and  tends to be desirable in all  cases. For example, 
it is better  than  the familiar  “raised-cosine’’ rolloff,  by a factor 
of  approximately 2 in  jitter variance [26] . It is interesting to  
note  that such pulse shaping is  also optimal from  the  stand- 
point  of providing maximal immunity  to timing or phase off- 
sets [33], [34]. This fact accentuates  the  importance  of 
proper pulse shaping for overall system performance. 

APPENDIX 

COMPLEX ENVELOPE REPRESENTATION OF SIGNALS 

A straightforward  extension  of  the familiar two-dimensional 
phasor representation  for sinusoidal signals has proven to  be a 
great convenience for dealing with carrier-type data signals 
where  properties  of  amplitude  and phase shift are of special 
significance. As a supplement to  this paper  only the most basic 
relationships are presented. More details and  the  derivations of 
the formulas can be  found in some texts  on communication 
systems or in  [6, chs. 4 and  71. 

An arbitrary signal x ( t )  can be represented exactly  by a 
complex envelope y( t )  relative to a “center”  frequency fo, 
which for  modulated-carrier signals  is usually, but  not necessar: 
ily,  taken as the frequency of  the unmodulated carrier. 

x( t )  = Re [y( t )  exp (j2rfot)] :‘ (A-1) 
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Expressing the complex number y( t )  in polar form reveals 
directly  the  instantaneous amplitude p ( t )  and phase O(t) of 
the signal. 

~ ( t )  = p(t> exp [ i W l  = c d t )  +ic&). (A-2) 
In some situations,  the rectangular form of y( t )  in (A-2) has a 
more direct bearing on the problem as it decomposes the signal 
into  its in-phase and quadrature (I and Q) components. 

x( t )  = cI(t) cos 27rfot- C Q ( t )  sin 2nfot. (A-3) 

Equation (A-1) might be regarded  as one part of a trans- 
form pair. The  other  equation, i.e., how to get y(t) ,  given x( t ) ,  
presents a small problem. Due to the  nature of the “real part 
of” operator Re, there is not a unique y( t )  for a given x(t) .  We 
solve this problem by making the  definition 

y( t )  = [x( t )  + &)I exp (-j2nfot) (A-4) 

where ;(t) is the Hdbert  transform  of x(t).  The prescription 
for getting y(t) from x(t )  is  especially  simple in the frequency 
domain.  The  Fourier transform ry) is obtained by doubling 
X ( f ) ,  suppressing  all negative-frequency values, and frequency- 
translating the result downward by an amount f,, . Incidentally, 
using this  approach no narrow-band  approximations concern- 
ing x(t)  are necessary, and an  arbitrary value of fo can  be 
selected. 

We now characterize the  two  most  important signal proces- 
sing operations, filtering and  multiplication, in terms  of equiv- 
alent operations  on  complex envelopes. Consider first the  time- 
invariant bandpass filtering operation in Fig. 10. We express 
the bandpass transfer function H ( f )  in terms of  an equivalent 
low-pass transfer  function s2(f), according to 

n(f) is not necessarily a physical transfer  function. If H ( f )  
exhibits  asymmetry about fo, then n(f) is asymmetric about 
f = 0 and  the corresponding impulse response w(t) is complex. 
In  fact, w(t) is  precisely the complex envelope of 2h(t), where 
h(t)  is the real impulse response of  the bandpass  filter. 

Straightforward manipulation shows that  the  input- 
output relation for  complex envelopes  is  also a time-domain 
convolution 

and  this result is  general because of our particular method  for 
defining the complex envelope in (A-4). If we express w(t) in 
terms  of  its real and imaginary parts, w(t) = pI ( t )  + j pQ(t ) ,  
then  the two-port bandpass filtering operation can be repre- 
sented by a real four-port filter with separate ports  for  the I 
and Q input  and  output.  The  four-port filter is a lattice config- 
uration involving the transfer functions P x f )  and PQ‘~) as 
shown in Fig. 10. 

Fig. 10. Bandpass filtering and low-pass equivalent operation on com- 
plex envelope signals. 

x(t)=Re[r(t)exp(i2wfot)] 

=$Re[v(t)b(t)exp(i4rfot)] 

Fig. 11 .  Low-frequency and 2f0 terms of product of two bandpass 
signals. 

Notice that if H ( f )  is symmetric about fo, then P Q ( ~ )  = 0 
(this is the  definition of  symmetry for a bandpass filter) and 
there is no cross coupling of  the I and Q components in  the 
filtering operation. 

Next we consider the  output of a multiplier circuit, z( t )  = 
x(t)y(t), when the  two  inputs are expressed in complex envel- 
ope  notation. From (A-8), the multiplier output consists of 
two  terms,  one representing low-frequency components and 
the  other representing components  around  2f0. 

z(t> = Re [ ~ ( t )  exp 0’2nfot)l Re [P(t) exp  (j2nfot)] 

= 4 Re [r(t)P*(t)] + 3 Re [y(t)p(t) exp (j47rfot]. 

(A-8) 

In most applications a multiplier is followed by  either a low- 
pass filter (LPF) or a bandpass filter (BPF),  as shown in Fig. 
1 1 ,  in  order  to select either  the first or second term in (A-8) 
and completely reject the  other  term.  In  our application we 
may regard y( t )  as the reference carrier;  then  the  LPF  output 
z l ( t )  is the response of a coherent  demodulator to x( t ) .  If 
y( t )  = x( t ) ,  so that  the multiplier is  really a squarer circuit,  the 
BPF output z Z ( t )  can be used for carrier  phase recovery. Its 
complex envelope, relative to 2f0, is proportional to y2 (t). 

Finally,  when  the bandpass signal  is modeled as a random 
process, we  use the same correspondence, (A-1) and (A-4), 
between the real process x( t )  and the complex envelope pro- 
cess y(t). It is of  interest to relate the statistical properties  of 
x( t )  to those  of  its in-phase and  quadrature  components, rel- 
ative to some fo. First we note  that E[x( t ) ]  = Re {E[y( t ) ]  
exp Ci;?7rfof)}; hence for a wide-sense stationary ( W S S )  x ( t )  
process, y( t )  must be a zero-mean process, in  order  that 
E[x( t ) ]  be independent  of t. Proceeding to an  examination 
of second-order moments, it is a simple matter  to show that 
y( t )  must be a WSS process  if x( t )  is to be a WSS process. The 
converse  is not  true. A WSS y( t )  may produce a nonstationary 
x(t) ,  indicated as follows. Rewriting (A-1) as 

x(t)  = 3 y(t)  exp (j2nf0t) + 4 y*(t)  exp (-j27rf0t) (A-9) 
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the  autocorrelation  for x ( t )  can be expressed as 

kxdt -k 7 ,  t )  = E[X(t 4- T ) X ( t ) ]  = 3 Re [k, ,(~) 

* exp 0’2nfo~)J + 3 Re [Icy, *(T) 

* exp 0’4nf0t + j 2 n f 0 ~ ) 1  (A- 19) 

where, for complex WSS processes,  we define  the  autocorrela- 
tion  of y(t) as 

k,y(T) = E[y( t  + 7)Y*(t)l. (A- 1 1) 

The  quantity k,,*(~) = E[y( t  + T )  y (t)] in (A-10) can be 
regarded as the cross correlation  between signal components 
centered at +fo and at -fo. If x ( t )  is WSS, then  this cross cor- 
relation  must vanish in  order  that  the t-dependent term  in (A- 
10) vanish. Otherwise x ( t )  i s  a cyclostationary process. 

If we let y(t) = u(t)  -t j qt), where the I and Q processes, 
u(t)  and Nt), are jointly WSS, then we  have 

k , , * ( 7 ) = k u u ( T ) - k , u ( T ) + j [ k u , ( T ) f k u u ( T ) ]  (A-12) 

and  the  condition  for  stationarity of x( t )  requires that 

kuu(7)  = k u u ( T )  and kuu(7) =- kuu(T). (A- 13) 

Thus  for a WSS bandpass process, the I and Q components  are 
balanced in  the sense that  they have the same  autocorrelation 
function. Also, the cross correlation of the I and Q compon- 
ents must be an odd  function, since kUu(7)  = kuU(-7) for  any 
pair of WSS processes. For example, u(t) = V(t) would satisfy 
the  autocorrelation  condition  in (A-13), but  not  the cross cor- 
relation condition.  The size of k,,*(~) indicates the degree of 
cyclostationarity  of a bandpass process. In  the extreme case 
where  either  the I or Q component is missing, as in DSB-AM, 
we  would have k,,*(~) = * k,, (T), e.g., for v(t) = 0, 

k,,(t -k 7, t )  = kuu(T) COS (2lTfoT) COS ( h f o t  + 2TfoT). 

(A- 14) 

In modeling an additive noise process n(t)  on received 
signals,  we often use the white-noise assumption wherein 
k,, (7) = NO6(7). If  we let r(t) + j  s ( t )  be the complex envel- 
ope  of  the process relative to  any fo which is significantly lar- 
ger than  the passband width  of  the signals, then  the  white- 
noise process is equivalently modeled by I and Q processes 
whose correlation  functions  are given by 

k r r ( 7 )  = k ~ ~ ( 7 )  = 2 N 0 6 ( T ) ;  k r s ( T )  = 0. (A- 1 5) 
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Joint  Carrier  Phase  and  Symbol Timing Recovery 
for PAM Systems 

Absrracr-The detection  of  pulse  amplitude  modulation  (PAM) 
carrier  signals  requires accurate  symbol  timing  and  carrier  phase 
references. In most  cases, it is  desired  to  estimate  these  parameters 
directly  from  measurements  on the  received  data signal. This  paper 
adds to and  unifies  the  theory of  maximum  likelihood  [ML]  estimation 
as  applied  to PAM  timing  and  phase  recovery. 

Several different  estimation  strategies  are  considered.  Data-aided 
[DA]  estimators  are found  which  assume  the  transmitted  data  symbols 
are  known  at  the  receiver.  Nondata-aided [NDA] estimators  are found 
which  require only  knowledge of the  statistics of the transmitted  data 
symbols. Structures  for  estimation of symbol  timing,  carrier  phase, 
and  joint estimation  of  timing  and  phase  are  presented. 

The  estimators  are evaluated  on  the  basis of their  error  variances. 
Relatively simple  approximate  expressions  for  these  error  variances 
are  presented.  These expressions  allow  the copparison  of the  effects of 
excess bandwidth,  different  modulation  schemes,. DA versus NDA 
recovery,  and  joint estimation  versus  estimation of only  one 
parameter.  A practical  implementation of the ML estimator,  termed a 
pseudo-maximum  likelihood  (PML)  estimator,  is  proposed and 
analyzed.  The  performance  of the PML estimator  is  shown  to  include 
a  noise-independent, data-dependent jitter which dominates in many 
cases  of practical interest. 

C 
I. INTRODUCTION 

OHERENT  demodulation  of a modulated-carrier signal 
requires the presence at  the receiver of a reference carrier 

with a precise  phase relation to  the received  signal. System 
economy usually requires that this reference be derived from 
the received  signal itself. If there is an  unmodulated compon- 
ent of the carrier (pilot carrier) present in  the signal, then a 
phase-locked loop can be used to determine the phase and 
track slow fluctuations  in  its value.  Even with “suppressed-car- 
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rier”  signals, a refined version of  this  approach called the COS- 
tas  loop [ 11 , [ 2 ]  can be used if there are two sidebands having 
some degree of correlation, as in PAM/DSB or,  to some extent, 
in PAM/VSB systems. However, this particular method fails 
with a PAM/SSB signal. 

Another  bandwidth-efficient  modulation scheme is  QAM, 
but  if  the in-phase and  quadrature channel signals are balanced 
(i.e., statistically identical), then  the Costas loop fails in  this 
case, also. Not only is  phase  recovery more difficult in these 
cases, but  the accuracy requirements on phase  recovery are 
more stringent. A phase error  in SSB introduces  quadrature 
distortion, while in QAM, crosstalk interference is introduced 
between the in-phase and quadrature channels. One solution to 
this problem is  “decision-directed’’ or “data-aided’’  phase 
recovery [3] - [12] whch can be employed  when the modula- 
ting message  signal  is some form  of digital data sequence. 

With synchronous digital data signals, there is another phase 
recovery problem concerning the proper sampling instants  for 
detecting  the  data sequence. Failure to sample at  the  correct 
instants leads to intersymbol  interference, whch can be espe- 
cially  severe if  the signal bandwidth is sharply limited. Data- 
aided approaches to symbol timing recovery  have  also been 
proposed [4 l ,  V I  , P I  4 1  1 I . 

In PAM/VSB  (SSB) or PAM/QAM systems, we have the 
possibility of  joint  estimation of the carrier phase and symbol 
timing parameters, either using data-aided (DA) or  nondata- 
aided  (NDA) strategies. Joint  estimation is the  topic  of  this 
paper. We examine the implementation of these recovery 
schemes and evaluate their  performance in terms  of the rms 
error  (jitter)  in  the  estimates  of  the parameters. We are par- 
ticularly interested in the relative effectiveness of  the DA 
and NDA schemes and the dependence of  performance on 
signal-to-noise ratio,  the  length  of time available for making 
the  estimates, and the  amount of bandwidth allocated to  the 
signal.  Previous timing recovery studies  [4] , [5] , [ 131,  [16] 
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