‘The Probability Model

2.1

This chapter describes a well-accepted model for the analysis of random experiments
which we refer to-as the Probability: Model. We also define a set algebra suitable for
defining sets of events, and describe how measures of likelihood or probabilities are
assigned to these events. Probabilities provide quantitative numerical values to the
likelihood of occurrence of events.

Events do n_ot always occur independently. In fact, it is the very lack of independence
that allows us to infer one fact from another. Here we give a mathematical meaning to
the concept of mdependence and further develop relations to deal Wlth probabilities
when-events-are-or-are not independent: - :

Several illustrations and examples are gwen throughout this chapter on basic prob-
ability. In addmon a number of applications of the theory to some basic electrical
engineering problems are given to provide motivation for further study of this topic
and those to come.

The Algebra of Events

We have seen in Chapter 1 that the collection of all possible outcomes of a random
experiment comprise the sample space. Qutcomes are members of the sample space and
events of interest are represented as sets (see Fig. 2.1). In order to describe these events

o7 events

G

Figure 2.1 Abstract representation of the sample space § with element s and sets Ay and
A representing events.

and compute their probabilities in a consistent manner it is necessary to have a formal

representation for operations involving events. More will be said about representing
the sample space in Section 2.1.2; for now, we shall focus on the methods for describing
relations among events.




THE ALGEBRA OF EVENTS 9
2.1.1 Basic operations

In analyzing the outcome of a random experiment, it is usually necessary to deal with

events that are derived from other events. For example, if A is an event, then A€
known as the complement of A, represents the event that “A did not occur.” The
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complement of the sample space is known as the null event, B = §°. The operations of
multiplication and addition will be used to represent certain combinations of events

“(known as intersections aud Unions in set theory). The staternent “A; - Ap,” or simply

“A1A,” represents the event that both event Ay and event Az have occurred (inter-
section), while the statement “A; 4 Ay” represents the event that either Ajor Ay or
both have occurred (union).! ) '

Since complements and combinations of events are themselves events, a formal struc-
ture for representing events and derived events is needed. This formal structure is in
fact a set of sets known in mathematics as an algebra or a field and referred to here
as the algebra of events. Table 2.1 lists the two postulates that define an algebra A.

1 IfA € A then A cA Table 2.1  Postulates
2 IfA eA a‘”d A e Athen Ay + Ay € A for an algebra of events.

Table 2.2 lists seven axioms that define the properties of the operations. Together these

MM =0 Mutual exclusion
| As = Al ) Inclusion
o : (AI c) =A Double complement

Commutative law
Ay + (Ao + Az) = (A1 + Ap) + Az Associative law

Ar(Ag+ Ag) = ArAs + ArAs
(A1A2)¢ = A"+ As° ..

Distributive law

DeMorgan’s law

Table 2.2 Axioms of operations on events.

tables can be used to show all of the properties of the algebra of events. For example,
the postulates state that the event Ay + As is included in the algebra. The postulates
in conjunction with the last axiom (DeMorgan’s law) show that the event “A1A»” is
also included in the algebra. Table 2.3 lists some other handy identities that can be
derived from the axioms and the postulates. You will find that you use many of the
results in Tables 2.2 and 2.3 either implicitly or explicitly in solving problems involving
events and their probability. Notice especially the two distributive laws; addition is

distributive over multiplication (Table 2.3) as well as vice versa (Table 2.2).

“Since the events “A; + A" and “A;A,” are included in- the algebra, it is easy to

1 The operations represented as multiplication and addition are commeonly represented with the
interseciion M and union U symbols. Except for the case of multiple such operations, we will
adhere to the former notation introduced above.
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Sc=0p _
o AH0=A, T Luclusion
AjAs = AsAy . Commutative law |-
: 7 _ Al (—A2A3)=(A1A2)A3 L Associative law
AT+ (A2As) = (A + A)(Ar + Ag)  Distributive law
(A1 +Ag)° =V-Af:Azc DeMorgan’s law

" “Table 2.3 Additional idenities in the algebra of events.

show by induction fbr any finite number of events A;, i =1,2,. .. IV, that the events
. . S
A=A+ 4+ 1Ay
=1
and L 7

N .

[JAi=AAs Ay

i=1
are ‘also included in the algebra. In many cases it is important that the sum and
product of a countably infinite number of events have a representation in the algebra.
For example, suppose an experiment consists of measuring a random voltage, and the
events A;-are defined as “4 — 1< voltage < i; 1 =1,2,....” Then the (infinite) sum of
these events, which is the event “voltage > 0,”-should be in the algebra. An algebra -

- : 1. The events
that includes the sum and product of an infinjte number of events, that is,

i o a time, i.e.
| - - s o - Fquivalent
—y o _UA.Z':A1+A2+A3+"'
. i=1

and 2. The events
sy always occ

ﬂ A.;,‘ = A'1A2'A3 L

. =1

is called a sigma-algebra or a sigma-field. The algebra of events is defined to be such A set of event

an algebra.

Since the algebra of events can be thought of as an algebra of sets, events are often
represented as Venn diagrams. Figure 2.2 shows some typical Venn diagrams for a
sample space and its events. The notation ‘C’ is used to mean one évent is “contained”
in another and is defined by
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Students of probability may at first have difficulty. in defining the sample space for an
experiment... It_is.thus. worthwhile. to.spend a Httlé more time on this concept.

We begin with two more ideas from the algebra of events. Let A;, Az, As,... be a
finite or countably infinite set of events with the’ following properties:
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: An algebra 1. The events are mutually ezclusive. This means that only one event can cccur aé
L — ~a-timei.e.the oceurrence of one-event precludes the occurrence of other events.
Equlvaiently, :
A?;Aj = @ for i 7’: j
2. The events are collectively exhaustive. In. other words, one of the events A; must
always occur. That is,
A FAstAgt=8

d to be such A set of events that has both properties is referred to as a partition.

Now, for an experiment with discrete outcomes, the following provides a Workmg

nts are often definition of the sample space [1]

igrams for a
“contained”

The Sample Space is represented by the flnest—gram mutually exclusive,
collectively exhaustive set of outcomes for an experiment.

(2.1)

You ean see that the elements of the sample space have the properties of a partition;
however, - the outcomes defining the sample space must also be “finest-grain.” This
-~i&-important; since-without this property it may not be possible to represent all of
the events of interest in the expériment. A Venn diagram is generally not sufficient
to represent the sample space in solving problems, because the representatlon usually
needs to be moré explicit. :

A discrete sample space may be just a listing of the posmble outcomes (see Example

space for an,
ept.
Az,...be a
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2.1) or could take the form of some type of diagram. For example, consider the rolling probabili

- of & pair of dice. The sample space might-be drawn as shown in Fig. 2.3. overlap.
Probal

@

(11)
Figure 2.3 Sample space
" corresponding to roll of (III)
the -dice. A; is the event
“rolling doubles”; Aq is the
event “rolling a ‘4’ (V)
Althougt
, , , - {IID), the

The black dots represent the outcomes of the experiment, which are mutually exclu- and the :
sive and collectively exhaustive. Some more complex events, such as “rolling doubles” which ar
are also shown in the figure. It will be seen later that the probabilities of such more From :
complicated events can be computed by simply adding the probabilities of the out-
comes of which they are comprised.

For an experiment in which the outcome is a real number or a set of real numbers, Since by
the sample space Is usua,lly chosen as a subset of the real line or a subsét of N- from (2.¢
‘dimensional Euclidean space (R™), as appropriate. This is the case for some of the
examples in Chapter 1. If the outcome of the experiment were complex numbers, then
you would probably define the sample space as a subspace of the space of complex for any ¢
numbers (CN ). These are examples of continuous sample spaces. We shall emphasize If Aq ¢
that in the solution of most problems involving probability, a first step is to find an events A
appropriate representation for the sample space.

2.2 Probability of Events From
2.2.1 Defining probablhty
We have seen that probability represents the likelihood of oecurrence of events. The Thus it
probability model, when properly formulated, can be used to show that the relative conseque
frequency for the occurrence of an event in a large number of repetitions of the exper-
iment, defined as - Tf ever
i number of occurrénces of the event one has-
relative frequency = .
~ number of repetitions of the experiment
converges to the proba,blhty of the event: Although probability could be defined in thls
way, it is more common to use’ the axiomatic ‘development given below. Thisisn

Probahility is conveniently represented in a Venn diagram if you think of the area and the
covered by events as measures of probability. For example,-if the area of the sample the prob
space S is normalized to one, then the area of overlap of events' A; and A, in Fig. “%Az”

subtract

2.2(b) can be thought: of as representmg the probability of the event A;A,. If the
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(I) The proba.blhty of any event is nonnegatlve

(II) The ﬁrobability 0% the un_iversé,i event (i.e., the entire sample space) is 1.
| Pris] - 1 2:3)
(IiI) If Ay and Ay are mutually exclusive, then
Pr[A1 + Ao] =Pr[Aq] +Pr{As] (if AjA:=10) (2.4)
(IV) If {A} represent a countably infinite set of mutually excluswe events, then
pr (| A{I ZPr[AZ] Gf AA; =0 i#7) (2.5)
i—1 i=1

Although the‘additivity of probability for any finite set of dISJ.omt eventsdfo]lows. from
(III}, the property has to be stated explicitly for an infinite set in (TV). These axioms
and the algebra of events can be used to show a riumber of other properties, some of
which are discussed below.

From axioms (II) and (III), the probability of the complement of an event is

Pr[A%] = 1 — Pr[A] (26

Since by (I) the probability of any évent is greater than or equal to zero, it follows

" from (2.6) that Pr{A] < 1; thus

0<PrA] <1 (2.7)

for any event A. .
If Aj C Asp then Ay can be written as Ap = A; + A;°As (see Fig. 2.2(c)). Since the
events A; and A;°A, are mutually exclusive, it follows from (III) and (I) that

Pr[As] > Pr[Ai]
From (2.6) and axiom (II}, it follows that the probability of the null event is zero:
Pri@] =0 : _ - (2.8)

Thus.it alse.follows that if Ay and Ag are mutually excluswe then AjA; = 0 and
consequently

PI‘[Al Az} : 0

If events A; and A, are not mutually exclusive, i.e., they may occur together, then
one has the general relation

: Pr[A1 -+ Az] = PI‘[A.]_] =+ PI'[.AQ] ; Pr{AlAQ] (2 9)

This is not an addition property; rather it can be derived using axioms (I) through (IV)
and the algebra of events. It can be intuitively justified on the grounds that in summing
the probabilities of the event A, and the event Asz, one has counted the common event
“A1A5” twice {see Fig. 2.2(b)). Thus the probability of the event “A;A.” must be
subtracted to obtain the probability of the event “A + Ag”.
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. 'These various derived properties-are summarized in Table 2.4 below. It is a useful
' excercise to depict these properties (and the axioms as well) as Venn diagrams.
PriA®=1-Prja]
o 0<PriA] <1 A
. : of
If A}_ c Ag then PI‘{A}] < PI‘[AQ} :
Prigj =0 o
If AyAy =@ then PrlA;A3] =0
PrlA; + As] = Pr[A;] + PriAs] — Pr[A; Ay
Table 2.4 Some corollaries derived from the axioms of probability.

As a final consideration, let Ay, Ag,Ag, ... be a finite or countably infinite set of We
mutually exclusive and collectively exhanstive events (see Section 2.1.2). Recall that 1.
such a set of events is referred to as a partition. The probabilities of the events in a !
partition satisfy the relation - ~ 5 ' ]

| AT
S Y PA) =1 (2.10)
and if B is any other event, then | ]
T > Pr[AB] =Pr{B] (2.11) 5 1
. 'i . . I
The latter result is referred to as the principle of total probability and is frequently

used in solving problems. The relation (2.11) is illustrated by a Venn diagram in Fig, 4.3
2.4. The event B is comprised of all of the pieces that represent intersections or overlap C
of event B with the events A,. E
S

Figure 2.4 Venn diagram o

ilustrating the principle of )

total probability. It is wor
would be f
Space in azx
since a par
Let us consider the following example to illustrate the formulas in this section. representat
‘Example 2.1: Simon’s Silurl.;lu_s.Warehouse has large barrels of mixed electronic components (You may +
(parts) that you can buy by the handful of by the pound. You are not allowed to seloct E In later sec
parts individually. Based on your previous experience, you have determined that in 3 posed in th
one barrel, 20% of the parts are bad (faulted), 3% are bad resistors, 12% are good Were specif
resistors, 5% are bad capacitors, and 32% are diodes. You decide to assign probabilities ' £tk becik
based on these percentages. Let us define the following events: : ) O bhese ex]
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A Venn diagram representing this situation is shown below along with probabilities
of various events as given:
Pr[FR| = 0.03
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D /' C) Pr[FC] = 0.05
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We can-answer a number of questions.

1. What is the probability that a component is a resistor {either good or bad)?
Since the events F and G form a partition of the sample space, we can use the
principle of total probability {2.11) to write

Pr[R] = Pr[GR] + PriFR] = 0.12+0.03=10.15

2. You have no use for either defective parts or resistors. What is the probability that

a part is either defective and/or a resistor?

-=—Ising (2:9)and the previous result-we can write

PrF + R] = Px[F] + Pr[R] — Pr[FR] = 0.29 -+ 0.15 — 0.03 = 0.41
3. What is the probability that a part is useful to you?
Let U represent the event that the part is useful. Then (see (2.6))
PrU] = 1 — PrfU°] = 1 — 0.41 = 0.59
4. What is-the probability of a bad diode?

Observe that the events R, C, and G form a partition, since a component has to
be one and only one type of part. Then using (2.11) we write

Pr[F] = Pr[FR]| + Pr[FC] + P:[FD)]
Substituting the known numerical valies and solving yields
(.29 = (.03 + 0.05 + Pr{FD] or Pr[FD] = 0.21
0

" Tt is worthwhile to consider what an appropriate representation of the sample space
would be for this example. While the Venn diagram shown above represents the sample
space in an abstract way, a more explicit representation is most useful. In this case,
since a part can be a bad resistor, good resistor, bad capacitor, and so on, a suitable

_ representation is the Hst of outcomes:

sample space: { FR GR FC GC FD GD}

(You may want to check that this satisfiés the requirements discussed in Section 2.1.2.)
In later sections of this chapter, you will see that the answers to the four questions
posed in this example can be easily obtained if the probabilities of these six outcomes
were specified or ‘could be computed. In this example however, the probabilities of all
of these experimental outcomes are not known, i.e., only partial information is given.
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P There is one more concept that is frequently. used when solving basic problems in
- -|-probability, but- cannot-be derived from either the algebra of events or any of the
{\axioms. Because of its- practical importance in’ solving problems, we introduce this

PrlAs Ay = PrlA] - Pr{As]

Two events A1 and A, are said to be statistically independent if and only if

That is, for two independent events, the prbbabﬂity of both occuring is the product
of the probabilities of the individual events. Independence of events is not generally
something that you are asked to prove (although it may be). More 'frequently it is
an assumption made when the conditions of the problem warrant it. The idea can be

extended to multiple events. For example, if A;, As and Ay are said to be matually

independent if and only i
Pr[A1A3A3] = Pr[A;] Pr{A,] PrfAs]
Note also that for independent events, (2.9) bécomes
© PrlA; + Ay = PrA, + Pr[As] — Pr{A{] Pr[Ay]

go the computation of probability for the union of two events is also simplified.

_The concept. of_sjsa,tistica,l....i_ndependence,—as—-we:ha,ve:'a:lr'e'a';dy said, cannot be derived
from anything else presented so far, and does not have a contvenient interpretation in
terms of a Venn diagram. However it can be argued in terms of the relative frequency
interpretation of probability. Suppose two events are “independent” in that they arise
from two different experiments-that have nothing to do with each other. Let it be

event A; and in N, repetitions of the second experiment there are ky occurrences
of the event A,. If N, and Ny are sufficiently large, then the relative frequencies
k;/N; remain approximately constant ag N; is increased. Let us now perform both
experiments together a total of IV 1V5 times. Consider the event A,. Since it oceurs kp
times in N repetitions of the experiment it will occur Nok; times in Ny N, repetitions
of the experiment. Now consider those Naky cases where A, occured. Since event A,
occurs ky times in N repetitions, it will occur k1 kg times in these Noky cases where
A; has oceured. In other words the two events occur together ky ko times in all of these
Ny N3 repetitions of the experiments. The relative frequency for the occurrence of the

two events together is therefore

ks Bk
MNy Ny N,

which is the product of the relative frequencies.of the individual events. So given the
relative frequency interpretation of probability, the definition {2.12) makes good sense.

2.3 Some Applications

Let us continue with some examples in which many of the ideas discussed so far in

this chapter are illustrated.
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Ma,ny problems involve a repetltlon of 1ndepe11dent evenis. As a typical example of
this, consider the experiment of tossing a coin three times in succession. The result
of the second toss is independent of the result of the first toss; likewise the result of
the third toss is independent of the result of the first two tosses. Let us denote the
probability of a “head” (I) on any toss by p and the probability of a “tail” (T) by
g = 1—p. (For a fair coin, p = ¢ = 1/2, but let us be more general.) Since the results
of the tosses are independent, the probability of any experimental outcome such as
BHT is simply the product of the probabih'ties p-p-q = p?q. The sequence HTH
has the same probability: pgp= 2 g Expenments of this type are said to involve
repeated independent trials.

An application which is familiar to électrical and computer engineers is the trans-
mission of a binary sequence over a communication chanmel. In many practical cases
the bits (1 or 0)-can be modeled as independent events. Thus the probability of a bit
sequence of any length 101101... is simply equal to the product of probabilities:
p-gq-p-p-q-p----. This con31derab1y simplifies the analysis of such systems.

An example is given below where the outcomes of the experiment are based on
repeated independent trials. Once the sample space and probabilities of the outcomes
have béeri specified, a number of other probabilistic questions can be answered:

Example 2.2: Diskettes selected from the bins at Simon’s Surplus are as likely to be good
as to be bad. If three diskettes are selected independently and at random, what is the
probability of getting exactly three good diskettes? Exactly two good diskettes? How
about one good diskette? h

Evidently buying a diskette at Simon’s is like tossing a coin. The sample space is
represented by the listing of outcomes shown below: wheré G represents a good diskette

BBB BBG BGB BGG GBB GBG GGB GGG
A A A A A AL A A

and B represents a bad one. Each outcome JS labeled as an event A,; note that the
events A; are mutually exclusive and collectively exhaustive.

Three good diskettes is represented by only the last event (As) in the sample space.
Since the probability of selecting a good diskette and the probability of selecting a
bad diskette are both equal to %, and the selections are independent, we can write

Pr[3 good diskettes| = Pr{As] = Pr[G] Pr[G] Pr[G] = (1)* = £
(see Section 2.2.2).

The result of two geed diskettes is represented i:)y the events Ay, Ag, a,nd A;. By a
procedure similar to the above, each of these events has probability %. Since these
three events are mutually exclusive, their probabilitics add (see Sectlon 2.2.1). That
is, - '

Pr(2 good diskettes] = Pr[As 4 As 4 A7] = Pr[A] + Pr{Ag] +Pr[A;] = L ststz=

Finally, a single good diskette is represeréed by the events Aj, As, and As. By an
identical procedure it is found that this result also océurs with probability %.

A
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" 'To be sure you understand the stepsmithls example, you should repeat this example
for the case where the probability of selecting a good diskette is increased fo 2. In this

- _ - case the probability of all of the-events-A; are not equal. For example, the probability
~ of the event Ag is given by Pr[G] Pr/B] PrlG]=%.3.8 = 15 YWhey you work through
the example you ,,Will.ﬁhd:.that\the—rprob&bilities of three and two good diskettes is
increased to 25 and 25 respectively while the probability of just one good disketie is

135
decreased to 133,

2.3.2 Problems involving counting =~

Many important problems involve adding up the probabilities of a number of equally-
likely events. These problems involve some basic combinatorial 'analysis, Le., counting
the number of possible events, configurations, or outcomes in an experiment,

deal with the problefu of counting the numbc;r of pairs, triplets, or k-tuples.of elements
that can-be-formed under various conditions. Let us review the main results here.

Rule of; p?pduct. In the formation of. k-tuples consisting of % elements where
there are N; choices for the 4tb element, the number of possible k-tuples is
Hf:l Ni. An important special case is when there are the same number of choices
N for each element. The number of k-tuples is then simply N%.

Permutations. A’ permutation is a, k-tuple formed by selecting from a set of
N distinct elements, where each element can only be selected once, (Think of
forming woids from a finite alphabet where each letter can be used only once.}
There are V choices. for the first-element; N — 1 choices for the second element,

-, and N —k4-1 choices for the kth element. The number of such permutations
is given by '

N1
AN — 1) (N = =
N-(N-1).- (N E+1) ™ —F
For £ = N the result is simply N,

Combinations. A combination is a k-tuple formed by selecting from a set of ¥V
distinct elements where the order of selecting the elements makes no difference.
For example, the sequences ACBED and ABDEC would represent two different
permutations, but only a single combination of the letters A through E. The

()= 7

This is frequently read as “N choose k,” which provides a convenient mnemonic
for its interpretation.

coeffient

Counting principles provide a way to assign or compute prabability in many cases.
This is illustrated-in-a number of examples below, =~ =

The following example illustrates use of some basic counting ideas.

Example 2.3: In sequences of k binary digits, 1’s and 0’s are equally likely. What is the

probability of encountering a sequence with a single ‘1’ (in any position) and all other
digits zero?
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- Imagine drawing the sample space for this experiment consisting of all possible se-

‘qienees. Using: the role of product we see thai there are 2* events in the sample space
and they are all equally likely. Thus we assign probability 1/2® to each outcome in
the sample space.

“Now, there-are just k of these sequences that have exactly one ‘1’. Thus the probability

is k/2".
g

The next example illustrates the use of permutation.

ple 2.4: IT technician Chip Gizmo has a cable with four twisted pairs running from

each-of four offices to-the service closet; but he-has-forgotten which pair goes to which
office. If he connects one pair to each of four telephone lines arbitrarily, what is the
probability that he will get it right on the first try?

The number of ways that four twisted pairs could be assigned to four telephone lines
is 4l = 24, Assuming that each arrangement is equally likely, the probability of getting
it right on the first try is 1/24 = 0.0417.

a

The following example illustrates the use of permutations versus combinations.

e e TExarple 2057 Five Surplis computetsare available for adoption. One is an IBM, another

is an HP, and the rest are nondescript. You can request two of the suplus computers
but cannot specify which ones. What is the probability that you get the IBM and the
HP?

Counsider first the experiment of randomly selecting two computers. Let’s call the
computers A, B, C, D, and E. The sample space is represented by a listing of pairs

AB BA AC CA
representing the computers chosen. Each pair is a permufofion, and there are 5!/(5 —
2)1 = 5 - 4 = 20 such permutations thai represent the outcomes in the sample space.

Thus each outcome has a probability of 1/20. We are interested in two of these out-
comes, namely IBM,HP or HP,IBM. The probability is thus 2/20 or 1/10.

Another simpler approach is possible. Since we do not need to distinguis_h between
ordering in the elements of a pair, we could choosé our sample space to be

AB AC AD AE

where events such as B,A and C,A are not listed since they are equivalent to A,B and
A,C. The nuniber of pairs in _this new sample space is the number of combinations of

5 objects taken 2 at a time:
5 5! :
(2) 2l —2) 10

Thus each outcome in this sample space has probability 1/10. We are interested only
in the single outcome IBM,HP. Therefore this probability is again 1/10.

|

The final example for this section illustrates a more advanced use of the combinatoric
ideas.
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77T Example 2.6: DEAIL éoﬁlputers Iﬁcorporated manufactures some of their computers in
the US and others in Lower Slobbovia. The loc_al_ DEAL factory store has a stock
of 10 computers that are US made and- 15 that-are dorefgn made. You order five

is the probability that two. or more of them are US-made?. -

The number of ways to choose 5 computers from a stock of 25 is

25 25!
(5) = m = 563130

This is the total number of possible outcomes in the s'a.mple spacé.

Now consider the number of outcomes where there are eiactly 2 US-made computers
in a selection of 5. Two. US. computers can be chosen from a stock of 10 in ( 120) possible
ways. For each such choice, three non-Us computers can be chosen in (135) possible
ways. Thus the number of outcomes where there are exactly 2 US-made computers is

— —given-by- — — - _
10y (15
2 /.43

Since the problem asks for “two or more” we can continue to count the number of ways
there could be exactly 3, exactly 4, and exactly 5 out of a selection of five computers.
Therefore the number of ways to choose 2 or more US-made computers is

10\ /15 10\ (15 10\ (15 10
()0 CIE) () (5) ¢ () =
The probability of two or more US-made computers is thus the ratio 3647 7/53130 =
0.687. e :
g

2.3.3 Network reljability
Consider the set of communication links shown in Fig. 2.5. In both cases it is desired

1

2 x o > 1 > ®
(a) (b)
Figure 2.5 Connection of communication links. (2) Parallel. (b) Series.

to communicate between points X and Y. Let A; represent the event that link 7 fails
and F be the event that there is failure to communicate between X and v, Further,
asswne that-the link failures are independent events. Then for the parallel connection
(Fig. 2.5(a)) ' '

PI‘[F] = Pr[AlAz] = Pr[Al] Pr[Az]
where the last equality follows from the fact that events A; and A, are independent,.
For the series connection: (Fig. 2.5(b)) : :

Prif] = PriAs + Ao = Pr[A;] + Pr[As] — Pr[A; Ay = Pr{A] +- PriAs] - PriA,;] Pr]A,]
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heir computers in where we have applied (2.9) and again used-the fact. that-the events are independent.
store has a stock o The algebra of events and the rules for probability can be used to solve some addi-

fe: "YOU' order five ot tignal simple problems such as in the following example.
rthivstoakT WhEE ™ R e e e e R CE L I :

Example 2.7: In the simple communication network shown below, link failures occur in-

;—ma,de computers
Qin (120) possible
1 in '(135) possible-
ade computers is

3

dependently with probability ». What is the largest value of p that can be tolerated
if the overall probability of failure of communication between X and Y is to be kept
less than 10737

2 number of ways

f five computers. Let F represent the failure of communication; this event can be expressed as ¥ =

(A1 4 Az)Az + A, The probability of this event can then be computed as follows:

rs is
477 PrlF] = Prl(A: + Az)As + Adl

: = Pr[A1A3 =+ A2A3] -+ PI‘[A4] — Pr[A1A3A4 -+ A2A3A4]
 3647T/53130 = "= PrfAu] + PrlAs As] + Pr[AsAs] — PriA; AsAg)

— PF[A1A3A4] — PI[A2A3A4] - Pr[A1A2A3A4]
= p+20°—3p°+p'
To find the desired value of p, we set this expression equal to 0.001; thus we need to
find the roots of the polynomial p* — 3p° + 2% 4 p — 0.001. Using MATLAB, this

polynomial is fourd to have two complex conjugate roots, one real negative root, and

es it is desired ,
ome real positive root p = (L.001, which is the desired value.

(]

An alternative _method can be used to compute the probability of failure in this

example. You list the possible outcomes (the sample space) and their probabilities as
shown in the table below and put a check (/) next to each outcome that resuits in
failure to communicate. _ ' '

. outcome probability

ories, I —

; ArAsAsAy vt

:lat, link : fails
d Y. Further,
el connection

F
1 v
A1AxAzAL° P’l-p)
AARASCA, - pP-p)
AjARAs°ALS PP(1—p)?

A1PACAPALS (1 —p)*

ind :

: ependent. Then you simply add the probabilities of the outcomes that comprise the event F. The
: procedure is straightforward but slightly tedious because of the algebraic simplification
Pr[A;] Pr [Ay] required to get to the answer (see Problem 2.19).
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2.4 Conditional Probability and Bayes’ Rule
_ '~*:2-4-'1**COndiﬁonaI*probab;]ityﬁ' e e

If A; and A; are tWQ__eyents,.‘theq:r—the—;probabiﬁ

1 ty-of the event A7 when it is known
that the event A, has occired is defined by the

relation
_ PI‘[AlAz]
P?[& [As] = “PriAl] (2.13)
Pr[A;]A2] is called the probability of “A, conditioned on A
of “A; given A,.” Note that in the special case th
independent, it follows from (2.13) and (2.12) that

two events are _indep_endent,.
The use of conditional pro

2" or simply the probability
at A; and A; are statistically
PrlA:]Az] = PrlA;]. Thus whey
conditioning one upon the other has no effect.

bability is illustrated in the following simple example,

guarrautees that in each package; at least one will he good. What is the

probability
that when you'buy a single package, you get two good diskettes?

Define the following events:

A1 Both diskettes are good.
Az ¢ At least one diskette is good.

The sample space and these events are ilhustrated below:

" EventA;
BB BG GB GG
L

Event A,

The probability we are looking for is

Pr[Ai]A,] = %—E?i%l

sample space are equally likely, the probability of
ed in Ag, it folows that Pr{A1 As] = Pr| 1], which

Recall that since all events in the
As is 3/4. Also, since A, is includ
is equal to 1/4. Therefore

O

It is meaningful to interpret conditional probability as the Venn diagram of Fig. 2.6.
Given the event A3, the only portion of A, that is of concern is the intersection that

Y

‘Figure 2.6 Venn- diagram
illustrating conditional
probability,
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A has with Ay. It is as if A, becomes the new sample space. In defining conditional
probability Pr[A;|As], the probability of event A1A2 is therefore “renormalized” by

‘hen it is known

(219)

" the probability
are statistically
A1]. Thus when
Hect.

ple example,

sught at Simon’s
kages of two and
3 the probability

: probability of
-Pr{A;], which

m of Fig:-2:6.
rsection that

i diagram
iditional

dividing by the probability of A,.
Equation 2.13 can be rewritten as

PI‘[A].AQ] = PI‘[Al IAQ] PI'[AQ] = PI'[Ag]A]_] PI‘[A}] (214)

where the second equality follows from the fact that Pr[A;As] = Pr[AzA]. Thus the
joint probability of two events can alweys be writlen, as the product of a conditional
probability end an unconditional probability. Now let {A;} be a (finite or countably
infinite) set of mutually exclusive collectively exhaustive events, and B be some other
event of interest. Recall the principle of total probability introduced in Section 2.2 and
expressed by (2.11). This equation can be rewritten using (2.14) as

Pr{B] = 3 Pr/BIA;] Pr[A] (2.15)

Although both forms are equivalent, (2.15) is likely the more useful one to remember.
This is because the information given in problems is more frequently in terms of
conditional probabilities rather than joint proba,blhtles {And you must be able to
recognize the difference!) _

Let us consider one final fact about conditional probability before moving on. Again
let {A;} be a (finite or countably infinite) set of mutually exclusive collectively ex-
haustive events Then the probablhtles of the A COIldl‘tiOl’led on any event B sum to

" one. That is; """

Z Pr[A;|B] = 1 (2.16)
The proof of this fact is straaghtforward Usmg the definition (2.13), we have

PriA;B Pr[A;B] Pr[B

Seim =3 tAB] _ ¥, PrlAB] _ Pr(8]

PrfB] =~  Pr[B] = Pr[B

where in the next to last step we used the principle of total probability in the form

(2.11). :
As an illustration of this result, consider the following brief example.

=1

Example 2.9: Consider the situstion in Example 2.8. What is the probability that when
you buy a package of two diskettes, only one is good?

Since Simon guarantees that there will be af least one good diskette in éach package,
we have the event Ap defined in Example 2.8. Let Aj represent the set of outcomes
{BG GB} (only one good diskette). This event has probability 1/2. The probability
of only one good diskette given the event As is thus

PI‘[AsAg] PI‘{A3] _ 1/2 _ 2

e Pr[As] © PriAs] ~ 3/4 3

The events Az and A; are mutually exclusive and collectively exhaustive given the
event A». Hence their probabilites, 2/3 and 1/3, sum to one.

[

PrlAs|As] =

2.4.2 Event trees

As stated above, often the information for problems in probability is stated in terms of
conditional probabilities. An important technique for solving some of these problems



94 S -THE-PROBABILITY MODEL

is to draw the sample spsce by conistructing a tree of dependent events and to use the
information in the problem to determine the probabilities of compound events.
‘The idea is illustrated in Fig. 2.7. In this figure; A is assumed to be an eveiit whose

ASBe
Figure 2.7 Sample space constructed using an event tree.

probability is known and does not depend on any other event. The probability of event
B however depends on whether or not A occurred. These coniditional probabilities are
written on the branches of the tree. The endpoints of the tree comprise the sample
space for the problem; they are a set of mutually exclusive collectively exhaustive
events which represent the outcomes of the experiment. The probabilities of these

" evenits are computed using (2.14), which is equivalent to multiplying probabilities

along the branches of the tree that form a path to the event (see figure). Once the
probabilities of these elementary events are determined, you can find the probabilities
for other compound events by adding the appropriate probabilities. The technique is
best illustrated by an example. :

Example 2.10: You listen to the roorning weather report. If the weather person forecasts
rain, then the probability of rain is 0.75. If the weather person forecasts “no rain,”
then the. probability of rain is 0.15. You have listered to this report for well over a
year now and have determined that the weather person forecasts rain 1 out of every
5 days regardless of the season. What is the probability that the weather report is
wrong? Suppose you take an umbrella if and only if the weather report forecasts rain.
What is the probability that it rains and you are caught without an umbrella?

To solve this problem, define the following events: ]
F = “rain is forecast” R = “it actually rains”
From the problem statement; we have the following information:
| PrRIF] =075 PrR[FY] = 0.15
CUUPHEBI =1/ PR = 4/5

The events and conditional probabilities are depicted in the event tree shown below.
The event that the weather report is wrong is represented by the two elementary
events FR® and F°R. Since these events are mutually exclusive, their probabilities can
be added to find

Prwrong report] = £(0.25) + 2(0.15) = 0.17
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FR -('1/5“)(0.7“5')

FR® (1/5)(0.25)

FFR (4/5)(0.15)

0.85 FCR® (4/5)(0.85)

The probability that it rains and you are caught without an umbrella is the event
F°R. The probability of this event is £(0.15) = 0.12.
0

2.4.3 Bayes’ rule

" One of the most important uses of conditional probability was developed by Bayes in

the late 1800’s. It follows if (2.14) is rewritten as

PI‘[AQIA]_} PI‘['Aﬂ
PI‘{Az]

This allows one conditional probability to be computed from the other. A particularly

important case arises when {A;} is a (finite or countably infinite) set of mutually

exclusive collectively exhaustive events and B is some other event of interest. From

(2.17) the probability of one of these events conditioned on B is given by

Pr[B|A;] - Pr{Ay]
PrB]

But since the {A;} are a set of mutually exclusive collectively exhaustive events, the
principle.of total probability can be used to express the probablhty of the event B.

PrlAy|Aq] = (2.17)

Pr[A;|B] = (2.18)

" Thus, substltutmg (2 15) into the last equation yields

Pr[B|A;] - Pr[A]

S P2[BIA; | PrlA] (2:19)

PrA:[B] =

~ This rvesult is knowi as Bayés? theorem or Ba,yes rule. It is used in a number of

problems that commonly arise in communications or other areas where decisions or

inferences are to be made from some observed signal or data. Because (2.19) is a more

complicated formula, it is sufficient in problems of this type to remember the. simpler

result (2.18) and to know how to compute Pr[B] using the principle of total probability.
As an illustration of Bayes’ rule, consider the following example.
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. '“Example 2.11: The U8 Navy is involved i
computers on-board ships. The N avy will buy. memor
o manufa.cturersfknownr—as"Af,”;ﬁL'g'; and Az, The probabilities of b
and Az (based on availability and cost to the government)

2:5 More Applications

.. 1/2 repectively. The Navy doesn’t Tealize; however; that t

the modules from Az, As,and Aj ig 0.006, 0.015, and 0.02 (respectively).

Back in the fleet, an enlisted technician upgrades the memory i

and finds thag it fails. What is the probability that the fuiled ;
What is the probability that it came from Aa?

Let F represent the event that a memory module fails. Using (2.18) and (2.19)

we can
write )
_ PI‘{F[A]_] . PI‘[A.]_] PI‘{FIAI} - PI‘[Al]
PriA:[F] = BalF ==
rlF] 3 5e1 PriFIA;] Pria]]
Then substituting the known probabilities yields
Pr{A,[F] = (0.006)1/6

_ 0001 0.0625
~ {0.006)1/6 + (0:015)1/3 + (0.02)1/2 ~ b0t —
and likewise _
o (0.02)1/2 _ 001
Pris|t] = (0.006)1/6 + (0.015)1/3 = (0.02)1/2 ~ oorg 062
Thus in alinost two-thirds of the ¢
0

ases the bad modyje comés from As,

concept of “information,” which is also. a probabilistic idea,

251 The binéi_ry communication channel

A number of problems naturally involve the use of conditional Probability and/or
Bayes’ rule. The binary communication channel, whick is an abstraction for a com-

munication system involving binary data, uses these concepts extensively. The ides is
illustrated in the following example. a ' '
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“Example 2.12:  The transmission of bits over a biuary'commu_nica,tion channel is repre-

: sented in the drawmg below, Where we use notation like 0g, Oz . .. to denote events “0

Pr[OR|0 } 0.95

Pi0g] = 0.5
T Pr{0,]1¢] = 0.10

Prf1g| 05] = 0.05

Pr{l]= 0.5

Pr[15/15] = 0.90

I

Receiver

Channel

Transmitter

sent,” “0 rece1ved ” etc. When a 0 is tra,nsmatted it is correctly received with proba-
bility 0.95 or incorrectly received with probability 0.05. That is Pr[0z|0g] = 0.95 and
Pr[1r|0s] = 0.05. When a 1 is transmitted, it it is correctly received with probability
0.90 and incorrectly received with probability 0.10. The probabilities of sending a 0
.or-a 1 are denoted by Pr[0s] and Pr[13] and are known as the prior probabilities. It
is desired to compute the probability of error for the system.

This is an application of the principle of total probability. If two events A; and As
form a partition, then (2.15) can be written as
7 Pl{ ] Pr{B]Al] PI‘[A1] -i— Pr[BiAz] PI'[AQJ

Smce the two events Os aﬂd 13 are mutually exclusive and collectively exhaustive, we
can identify them with the events Ay and Ao and take the event B to be the event
that an error occurs. It then follows that

Prierror|0s] Pr[0s] + Pr teﬁor[ls] Prlg]

Prlerror] =

Pr[lﬂl(]s] PI’J:OS] + PI[ORlls] Pl'{lg]
= (0.05)(0.‘5) '+-(0.10}(0.5) = 0.075
a .

The probability of error is an overall measure of performance that is frequently
used for a communication system. Notice that it involves not just the conditional
error probabilities Pr[1g{0g] and Pr[0z|1g] but also the prior probabilities Pr/0s] and
Pr{lg] for transmission of a 0 or a 1. One criterion for optimizing a commumcatlon
system is to minimize the probahility of error.

If » communication system is correctly designed, then the probability that a 1 was
sent given that a 1 is received should be greater than the probability that a 0 was
sent given that a 1 is received. In fact, as will be shown later in the text, this con-

dition_applied. to both 0’s- -and 1’s le&ds to minimizing the probability of error. The

computation of these “inverse” probabilities is illustrated in the next example.

Example 2.13: Assume for the communication system illustrated in the previous example
that a 1 has been received. What is the probability that a 1 was sent? What is the
probability that a 0 was sent? '

This is an application of conditional probability and Bayes rule. For a 1, we have
Pr(lz|ls] Prlls] _ " Pr[lrlls| Prils]
Pr[lg] Pr[1r|1s] Pr[lg] + Pr[1gr[0g] Pri0s]

Pr[ls|lp] =
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Substituting the numerical values from the figure in Example 2.12 the_p yields
. . . o 7.7-77"7 ‘{0.9}(0.5) o _ R .

E N (O 00505 = 0947

. For a0, we have a.similar analysis: - .- _
o _ Pr{1z[0s] Priog]
Pri0g1 =
.r[ 5/1g] Pr[1g|1g] Prllg]+ Pr(1z{0s] Pr[0g]
 (0.05)(0.5) :

: - = (1L.0526
(0.9)(0.5) + (0.05)(0.5) ~ U0
Note that Pr{lg]1x] > Pr[0si1z) as would be expected, and also that
Prlls|1r] + Pr[0s|1g] = 1. _

o

_2;’5?2’f"l7iea§uring information and co.d.."ng

12, 3, 4] and others in the late 1940’s and ’50’s and provides fundamental results about
n-or cannot do. This section provides just a

L. To be specific, assume thaf the transmitter, or source, outputs the symbol to the

- _communica,tion-'='chann‘el"With“"ﬁhé"’fbﬂowihé probabilities: Pr[A;] = 3 and Pr{A,] = £

The information associated with the event A, is defined as
N I(A;) = —log Pr[A,]
The logarithm here is taken with feSpéct to the base 2 and the resulting information
is expressed in bits.2 The information for each of the two symbols is thus
I(A;) = ~log Pr[3] = 3 (bits)
I{Az) = —log Pr[f] = 0.193 (bits)
Observe that events with lpwer probabilify have higher infofma

tion. This corTesponds
0 intuition. Someone telling you about an even

t that almost always happens provides
little information. On the other hand, someone telling you about the occurrence of g

2- .
H=3"PrlA}I(A) =21.34 2+0.193 = 0.544
=1 -

Notice that -this-average information is less than one bit, although it is 1ot possible to
transmit two symbols with less than one binary digit (bit). _

Now consider the following scheme. Starting anywhere in the sequence, group to-
gether two consecutive bits and assign this pair to one of four possible codewords. Let

2 Other less common choices for the base of the logarithm are 1(_}," in which case the units of infor-
mation are Hartleys, and e in which case the units are called nats,

3 Average information is also known as the source entropy and is discussed further in Chapter 4.
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