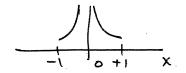


1. (15 points)

A cellular provider measures the duration (seconds) of 4 calls. These are

$$v \in [40, 20, 50, 20]$$

Given that this is the universe of all calls,



- (a) provide a labeled sketch the PMF for the duration of a random call v.
- (b) Determine the mean duration of a call. $20 \times 1 + 40 \times 4 + 50 \times 4 = 32.5$

2. (15 points)

A RV \mathbf{x} has pdf

$$p(x) = C|x|^{-\frac{1}{2}}, -1 \le \mathbf{x} \le +1$$

- (a) Sketch the pdf.
- (b) Determine C.

(c) Find $P\{x > 0\}$.

3. (30 points)

A positive RV x is known to satisfy

$$P\{x > x\} = \exp(-x^{c}) \quad (\text{Weiful!})$$

$$1 - e^{-x^{c}}$$

$$e^{-x^{c}} e^{-x^{c}}$$

(a) Find the CDF for x.

(b) Find the PDF for x.

(c) Find all the values of c for which this is a proper PDF.

C>0

4. (20 points)

A communications channel scales the the input amplitude A > 0 by a random amount $\sqrt{\mathbf{v}}$ and puts out

$$\mathbf{r} = A\sqrt{\mathbf{v}}$$

Assuming that the power v is exponentially distributed with mean 1,

(a) Find the CDF of the RV r

(b) What is the probability that the output is smaller than the input? $P \left\{ \bigvee \left\langle 1 \right\rangle \right\} = 1 - \frac{1}{\rho}$

5. (20 points)

With good service, a random customer drops a cellular provider with probabilty p = .4. However, given 'bad service' the drop probability increases to p = .8, where 'bad service' incidents occur only 10% of the time. There are only two types of service: Good and Bad.

- (a) Determine the Probability that a customer drops, regardless of service.
- (b) Given a drop, what is the probability of bad service?