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Random Variables
• RVs - numerical outcomes of random experiments

• Replace {tails, heads } by S = {0,1}     |S|=2
• Replace {red, green, blue, yellow} by { 1, 2, 3, 4}

• Conceptually simple  if |S| is finite or countable

• A discrete RV is a numerical outcome whose 
sample space S is finite or countable.

• Often conceptualized as a mapping from the 
Discrete Sample Space to a number, vector



Discrete RVs
• Bernoulli 
• Binomial
• Uniform
• Geometric
• Poisson
• Negative Binomial

• Many others that are used in system modeling
• Wikipedia is a good source for probability 

distributions



Questions to Ask about RVs
• What is the experiment?  Real-World Appls?
• How to generate in software? Simulation.
• What are the …
• Events?  Outcomes?  Probabilities?

• How do we compute the probabilities?
• How do we visualize the distribution?

• However, often RVs are composed/computed from simpler 
RVs through functions of RVs :

• Sum, product, min, max, kth largest of n, etc



Standard Terminology
• Discrete RV x in [1:N]  boldface, uppercase, tilde

• Do not confuse the RV x with the possible 
outcomes x_1, x_2, …, x_N

• P_n = Pr(x=n) = PMF  Probability Mass Function

• P_n >= 0        where  \sum P_n = 1

• These normalization conditions are important 
constraints on the PMF P_n



Bernoulli (p)
• RV x in [0,1]  = {heads, tails}  or   {success, failure}
• Pr[ x=1 ] = p, then Pr[ x=0 ] = q:= 1-p            
• Normalization  0 <= p, q <= 1    where   p +q = 1

• MATLAB: >> x= rand<q;% generates 1 Bern (p)

• Sketch the PMF here!
• Odds ratio is p/q

• The Bern (p) is a basic building block in modeling



Repeated Independent Trials
• Model – a sequence of T iid trials of Bern(p)
• Bernoulli Process
• iid := independent and identically distributed

• sequence of x= (x_1 … x_t) finite or infinite seq
• Each x_i is an iid Bern (p)
• The sample space is all 2^t binary strings.
• The probability of a binary string with k ones and t-K zeros i
• P(1…1…0…0) = p^k q^(t-k) same for all ordering
• >> rand(1,10)<.2
• ans =   0     0     1     1     0     1     0     0     0     0



Binomial (n, p)
• Consider a Bern(p) trail with n tosses.
• Outcome is the nx1 random sequence x

• Each element of x is 0 or 1,   P( x_i = 1 ) = p

• The Binomial RV is the sum the sequence – total count of the 
ones   RV y = \sum x_i

• Clearly   0<= y <= n  can show

• P( y = k) = { n choose k } p^k q^(n-k)

• Simulate by counting Bernoulli Trials



Derivation
• To prove this we look at all the outcomes that 

result in a total count of k out of n
• There are {n choose k} ways each with probability
• p^k q^(n-k)    p+q =1

• The probability of an event is the sum of the 
probabilities of all outcomes union totals the event 
of interest.R elabel the sample space!

• P( 2 out of 3) = P(110) +P(011) +P(011)



Binomial Coefficients
• {n choose k} := n_C_k = n!/(n-k)! k!
• Much cancellation of common factors

• n_C_k =  \prod_{j=0}^{k-1} [ (n-j)/(1+j) ]
•
• Can compute n! = gamma(n+1) 
• using MATLABs’ gamma.m
• Asymptotic approximations –use Stirling’s formula
• n! = \sqrt(2 \pi) n^(n+1/2) exp(-n) as n-> \inf



Computing Binomial (n, p)
• Cumulative Distribution Function CDF

• PMF P( y = k) = { n choose k } p^k q^(n-k)
• Can be computed directly, but easier to apply
• The Incomplete Beta Function betainc.m
• I_x (a, b) = betainc(x,a,b)
• P(k) = P( k <= k) = betainc( 1-p, n-k, k+1);
• P(k) = P( k > k) = betainc( p, k+1, n-k);

• Then P( a <= k <=b ) = P(b)-P(a-1), etc
• Write out the math (don’t rely on ppt!)



Computing Binomial (n, p)
• Cumulative Distribution Function CDF

• PMF P( y = k) = { n choose k } p^k q^(n-k)
• P(k) = P( k <= k) = betainc( 1-p, n-k, k+1);
• P(k) = P( k > k) = betainc( p, k+1, n-k);
• n=7;p=0.77,q=1-p,k=5;
• binocdf( k, n, p),betainc(q,n-k,k+1)

• n=7;p=0.77,q=1-p,k=5;
• cdf1=binocdf( k, n, p),edf1=1-cdf1;betainc(p,k+1,n-k)
• Shows these are the same numerically



Waiting Times - Geometric
• Model:  Flip coin repeatedly, mark the time until the  first 1. 

RV x = number of tosses until first 1
• x = 1,2,3,4,5,… countable number of outcomes
• Unlimited number of trials Bern(p)

• To compute the probabilities, relabel the events!
• P(x=1)  =     P(1) = p,      P(x=2) = P(01)=qp,  
• P(x=3) = P(001) = q^2p P(x=4) = P(0^31) =q^3p

• P(x=n) =P_n=q^(n-1)p with \sumP_n =1    Geo(p)
• Here n=1,2,3,…
• This is a probabilistic proof of the geometric series 



Computing Geometric (p)

• P( y = k) = q^(k-1)p, k=1,2,3,…
• Can be computed directly, 
• using partial sums of geometric series
• Cumulative Distribution Function CDF
• P(k) = P( k <= k) = \sum(j=[1:k]) q^(j-1)p
• This has a closed form!
• Alternatively use cumsum for numerics
• Write out the math (don’t rely on ppt!)



Negative Binomial Distribution
• Again, observe an unlimited sequence of Bern(p)
• Repeated independent trials, iid 
• Observe  waiting time x until r^th 1 for any r=1,2,3 

• Generalization of the Geometric distribution
• To find the distribution of P_n, look at n=0,1,2,…

• P(x<r) = 0, 
• P(x=r) = P( {0^(r-1) 1} ) = q^(r-1) p
• P(x=r+1) – note the event can occur in several ways



Negative Binomial Derivation
• Think for a long time …

• How can the r^th 1 occur on the n^th trial???
• Last toss must be a 1 AND earlier tosses must 

have had r-1 ones in n-1 trials, in any order
• Put this together after recalling the binomial

• P(x=n) = {n-1 choose r-1} p^(r-1)  q^(n-r) p
• Non-zero only for n = r, r+1, r+2,…
• Total Probability sums to 1



Computing Neg Bin (n,r,p)

• P(x=n) = {n-1 choose r-1} p^(r-1)  q^(n-r) 
• Can be computed directly, but easier to apply
• The Incomplete Beta Function betainc.m
• I_x (a, b) = betainc(x,a,b)
• P(k) = P( k <= k) = betainc(p, r, k-r+1);k=r,r+1,…
• Cumulative Distribution Function CDF
• Then P( a <= k <=b ) = P(b)-P(a-1)
• Write out the math (don’t rely on ppt!)



Applications of Waiting Times
• You are searching for 1 particular key out of K
• You try at random, without keeping track of 

previous trys (bad idea?!).
• What is the probability that you find the right key 

on the n^th try?
• Geo(p) with p=1/K
• Compare that with a search without replacement
• Try one key, try the next, etc worst case is K
• Interesting to ask how many more trials should be 

expected with random search – Mean,Variance etc



Poisson Distribution
• Among the most important discrete distributions
• Limiting case of the binomial   
• Let C_n,k := { n choose k}=n! / k! / (n-k)!
• Binomial(n,p) RV          0 <= k <= n   
• P_k = C_n,k p^k q^(n-k) for k in [0:n]

• Poisson Limit   Let n -> infinity, while p -> 0
• Such that a = np stays finite and non-zero

• P_k = a^k exp(-a)/k!   K=0,1,2,3,…
• Total probability is 1 by the exponential power series  
• Computation Incomplete Gamma Function gammainc.m



Applications
• When interest is  in k out of n, for large n, small p
• Accidents, call arrivals, low-light level 

photoelectrons, cell counts
• Extends to time series and higher dimensions

• The most important distribution in classical 
telephony

• The Poisson Process is one of the most important 
Discrete Stochastic Processes



Birthday Problem Approximation
• Seek P_k that exactly k of n people will have
• the same birthday – large n=500, p=1/365
• Then a=np = 1.3699 matches exact to within 3 

places for all k

• Stream of n symbols, p is probability of error per 
symbol. Then for large n, small p, P_k is the 
probability of k symbol errors

• The Poisson parameter a = np is a unitless, a ratio 
of 2 numbers in the same units Why



More Poisson
• Now observe a time interval [0,T], with random 

incidents (photons, calls, failures, jobs,etc)
• Under a model in which the chance of overlapping 

incidents is small and non-overlapping incidents are 
independent, the Poisson Distribution arises

• Here a = rT where r= is the rate (per unit time)

• P_n = a^n exp(-a)/n!  Note that a =rT is unitless,
• So that r is a rate of arrival per unit time



Poisson Distribution
• Poisson Limit   Let n -> infinity, while p -> 0
• Such that a = np stays finite and non-zero

• P_k = a^k exp(-a)/k!   k=0,1,2,3,…

• Computation Incomplete Gamma Function gammainc.m
• K~Poiss(a), P( k <=k ) = 1-gammainc(k+1,a)
• Or cumsum: P( k <= k) =sum_{k=0:k} a^k exp(-a)/k! 

• a=17;k=22;cdf1 = poisscdf(k,a),
• Cdf2 = 1-gammainc(a,k+1)



Aside: Unitless Quantities
• From physics recall formulas
• x = vt +at^2/2, velocity v, acceleration a, time t

• Clearly vt and at^2 must have the same units to be 
added with meaning (you can’t add apples and 
oranges)

• Consider exp(x) = 1 + x+x^2/2! + …

• The same reasoning shows that x must be unitless
• Else x and x^2 do not have the same units



Probabilistic Proofs of Power Series 

• By Total Probability (\sumP_n =1) we have proved

• \sum_{k=0:n} { n choose k}  p^k q^(n-k) = 1
• \sum_{k>=1} q^{k-1}p = 1
• \sum_{k>=r} { n-1 choose r-1 } p^r q^(n-r)  = 1

• Probability as an alternative to analysis …
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