EE 416

Final Exam, Autumn 2009

Monday Dec. 14, 2009, 8:30-10:20 AM

Name (Last, First):

Scoring

Problem	Points	Score
1	15	
2	15	
3	15	
4	15	
5	20	
6	10	
7	10	

Instructions:

Boldface type (mostly) indicates a RV, \mathbf{x} , \mathbf{t} . Closed Book, 110 minutes, 6 (two-sided) pages personal notes.

Be neat, show your work , and staple your exam. $Explain \ your \ method \ for \ partial \ credit$

Problem 1 (15pts)

A RV \mathbf{x} on $(-\infty, +\infty)$ has pdf

$$p(x) = \frac{1}{2} \exp(-|x-1|) \tag{1}$$

Evaluate $P[-1 \le \mathbf{x} \le +3]$ Evaluate $E[\mathbf{x}]$.

$$\begin{split} P[-1 \leq \mathbf{x} \leq +3] &= \int_{-1}^{3} p(x) \, \mathrm{d}x \\ &= 2 \int_{1}^{3} p(x) \, \mathrm{d}x \quad \text{(by symmetry)} \\ &= 2 \int_{1}^{3} \frac{1}{2} \exp(-|x-1|) \, \mathrm{d}x \\ &= \int_{1}^{3} \exp(-(x-1)) \, \mathrm{d}x \\ &= 1 - e^{-2} \end{split}$$

 $E[\mathbf{x}] = 1$ (by symmetry)

Problem 2 (15pts)

A Laplace random variable \mathbf{y} has pdf

$$p(y) = C \exp(-|y|) \tag{2}$$

What is C?

You are asked to design a quantizer that splits the domain of p(y) into 4 segments. Each segment should have the same probability 1/4 of containing **y**.

Find the 3 segments boundaries $[Y_1 Y_2 Y_3]$.

For p(y) to be a valid pdf, $\int_{-\infty}^{\infty} p(y) dy = 2C = 1$, then $C = \frac{1}{2}$. The 1st segment is $[-\infty, Y_1]$, $\int_{-\infty}^{Y_1} p(y) dy = \frac{1}{2}e^{-Y_1} = \frac{1}{4}$, then $Y_1 = -\ln 2$; The 4th segment is $[Y_3, \infty]$, $\int_{Y_3}^{\infty} p(y) dy = \frac{1}{2}e^{Y_3} = \frac{1}{4}$, then $Y_3 = \ln 2$; For the probability in $[Y_1, Y_2]$ and $[Y_2, Y_3]$ to be $\frac{1}{4}$, $Y_2 = 0$ by symmetry. Therefore, $[Y_1, Y_2, Y_3] = [-\ln 2, 0, \ln 2]$.

Problem 3 (15pts)

A system puts out a random IID sequence of 0, 1 (ZERO, ONE) bits, with equal probabilities $(P(0) = P(1) = \frac{1}{2})$.

After n bits (n = 1, 2, 3, ...), find (as a function of n) the probability that the number of ONES equals the number of ZEROS?

For odd
$$n$$
, $\Pr[\#ONES = \#ZEROS]=0$;
For even n , $\Pr[\#ONES = \#ZEROS] = \begin{pmatrix} n \\ \frac{n}{2} \end{pmatrix} (\frac{1}{2})^{\frac{n}{2}} (\frac{1}{2})^{\frac{n}{2}}$;

Problem 4 (15pts)

Define $Q(x) := P[\mathbf{x} > x]$, when **x** is a zero-mean, unit variance, Gaussian RV, N(0, 1). In terms of Q, find

$$P[-2\mathbf{x} + 3 < 0]$$

How would you compute this in Matlab?

$$P[-2\mathbf{x} + 3 < 0] = P\left[\mathbf{x} > \frac{3}{2}\right]$$
$$= Q\left(\frac{3}{2}\right)$$
$$= \frac{1}{2}\left(\operatorname{erfc}\left(\frac{3}{2\sqrt{2}}\right)\right)$$
$$= \frac{1}{2}\left(1 - \operatorname{erf}\left(\frac{3}{2\sqrt{2}}\right)\right)$$

MATLAB code:

>> 1/2*erfc(3/2/sqrt(2)) or

>> 1/2*(1-erf(3/2/sqrt(2)))

Problem 5 (20pts)

A 2 × 1 random vector $\mathbf{x} = [x_1 \ x_2]^T$ has mean zero and covariance matrix (in terms of ρ)

$$\left[\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right]$$

What is the allowable range of ρ ? Evaluate $E[(x_1 + x_2)^2]$

From the covariance matrix, $\sigma_{x_1} = 1$, $\sigma_{x_2} = 1$, so $\rho = \rho_{x_1,x_2}\sigma_{x_1}\sigma_{x_2} \in [-1,1]$, where the correlation coefficient $\rho_{x_1,x_2} \in [-1,1]$. $E[(x_1 + x_2)^2] = E[x_1^2 + 2x_1x_2 + x_2^2]$ $= E[x_1^2] + E[2x_1x_2] + E[x_2^2]$ $= (\sigma_{x_1}^2 + \mu_{x_1}^2) + 2(cov(x_1, x_2) + \mu_{x_1}\mu_{x_2}) + (\sigma_{x_2}^2 + \mu_{x_2}^2)$ $= 1 + 2\rho + 1$ $= 2 + 2\rho$

Problem 6 (10pts)

Consider the following snippet of MATLAB code.

>> N=100;h = ones(N,1);
>> w = 2*randn(N,1);
>> x = conv(h,w);

How long will the output vector \mathbf{x} be? The output will consist only of a noise component, due to the input noise \mathbf{w} . What is the output noise variance in the steady state? You can neglect any filter transients. The effect of transients was never discussed in class.

The x has length 100+100-1=199.

The output at steady state is $\tilde{\mathbf{w}} = \mathbf{h}_{\text{flipped}}^T \mathbf{w} = \mathbf{h}(N)\mathbf{w}(1) + \cdots + \mathbf{h}(1)\mathbf{w}(N) = \mathbf{w}(1) + \cdots + \mathbf{w}(N)$, where $\mathbf{w}(i)$ has variance 4. Since $\mathbf{w}(i)$ are independent, $\operatorname{var}(\tilde{\mathbf{w}}) = N\operatorname{var}(\mathbf{w}(i)) = 400$.

Problem 7 (10pts)

The **x** and **y** are two independent exponential random variables. We are given that $E[\mathbf{x}] = 1$, $E[\mathbf{y}] = 2$, so they are not identically distributed. Compute $P[\mathbf{x} > \mathbf{y}]$.

method 1: $\lambda_x = 1, \ \lambda_y = \frac{1}{2}.$ Joint probability $p(x, y) = \lambda_x e^{-\lambda_x x} \lambda_y e^{-\lambda_y y} = \frac{1}{2} e^{-x - \frac{1}{2}y}.$ $P[\mathbf{x} > \mathbf{y}] = \int_0^\infty \int_y^\infty \frac{1}{2} e^{-x - \frac{1}{2}y} \, \mathrm{d}x \mathrm{d}y$ $= \int_0^\infty \frac{1}{2} e^{-\frac{3}{2}y} \, \mathrm{d}y$ $= \frac{1}{3}.$

method 2 (property of exponential r.v., see wikipedia): $P[\mathbf{x} > \mathbf{y}] = P[\mathbf{y} = \min(\mathbf{x}, \mathbf{y})] = \frac{\lambda_y}{\lambda_x + \lambda_y} = \frac{1}{3}.$