

species	Lifetime ^a	Reference	
CH ₃ CCl ₃	4.8 y (5.7 y)	WMO [1999]	(solvant)
CH ₄	8.4 y (8.9 y)	ibid.	
CHF ₂ Cl	11.8 y (12.3 y)	ibid.	(HCFC 22, refrigerant)
CH ₃ Br	0.7 y (1.7 y)	ni kale Adale ibid. Patri la de	
Isoprene ^b	~ 1 h (~ <i>l h</i>)	Jacob et al. [1989]	$(C_5H_8, emitted by veget$
CO	2 mo (2 mo)	Logan et al. [1981]]
NO _x (NO+NO ₂)	~ 1 d (~1 d) ^c	Dentener and Crutzen [1993]]
SO ₂	~ 1 d (2 wks) ^d	Chin et al. [1996]	
(CH3)2S	~ 1 d (~ <i>l</i> d)	ibid.	

Sinks of OH
Reaction of OH with OH and CH_4 are the dominant sinks of OH in the troposphere:
$CO + OH \rightarrow CO_2 + H$
$CH_4 + OH \rightarrow CH_3 + H_2O$
In the lower troposphere over continents, reaction with non- methane hydrocarbons (NMHCs) is also important:
NMHC + OH \rightarrow products
Lifetime of OH ~ 1 second!

Range of estimates (Tg CO y	
ources	1800-2700
Fossil fuel combustion / industry	300-550
Biomass burning	300-700
Vegetation	60-160
Oceans	20-200
Oxidation of methane	400-1000
Oxidation of other hydrocarbons	200-600
inks	2100-3000
Tropospheric oxidation by OH	1400-2600
Stratosphere	~ 100
Soil uptake	250-640

