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Initial Value Problem

CSS 455
Winter 2012

IVP
• Consider the differential equation:
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Turner uses dy/dx = f(x,y) 
instead of dy/dt = f(t,y)

By inspection, its solution is: atcety =)(

Each choice of c is a different solution, and 
together they form the family of solutions.

More generally:  ))(,()( tytfty =′

Family of solutions y(t) = ceat

• Case: a=1.

Unstable family of 
solutions due to thesolutions due to the 
nature of the ODE 
being solved.

Family of solutions y(t) = ceat

• Case: a=-1.

Stable  family of 
solutions due to the 
nature of the ODE 
being solved.

Family of solutions for y’(t) = a
• Case: a=1/2.

y(t) = (1/2)t+c

Neutrally stable  y
family of solutions 
due to the nature of 
the ODE being 
solved.

Family of solutions y(t) = ceat

Initial Value Problems specify the family 
member by specifying the initial values of t
and y:   {t0, y0}

• For example:  at t = 0, y = 1.
(requires that c = 1).
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Taylor Series Expansion for y(t)
The value of y(t) at points near t0 can be 
expressed in terms of its derivatives:
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In the Euler method only the first two terms 
are retained in the approximation:
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Looks like a fixed point iteration
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Local truncation error is error introduced in 
a single step by truncation of the series:
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k-order method:  LTE is proportional to hk+1

Euler is 1st order method. we will see why later

Global Truncation Error

• The errors at each step move the approximate 
solution among the family members.

• The Global Truncation Error is the total error at 
time tn relative to the exact solution starting from 
the initial value.

• GTE may be smaller or larger than sum of LTE’s
• For stable IVP’s, the GTE can be controlled by 

limiting the LTE’s. 

Euler’s method for unstable ODE

Euler’s method for unstable ODE

Global Error is larger 
than sum of local errors

Euler’s method for Stable ODE
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Euler’s method for Stable ODE

Global error is less than 
sum of local errors.  
Global error can be 

t ll d b li iticontrolled by limiting 
local errors (e.g. through 
small step size)

Methods also have stability
• With unstable methods, small perturbations initial 

conditions cause diverging results.
• Apply Euler method to
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If h >1/5,  |1-10h| > 1, then the error 
will grow from one step to the next, 
even though the IPV itself is stable. 
(small h is required)  demo1ch6.m
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The family of 
solutions is stable 
here.  But, the method 
is not always stable.

Effect of step size Backward Euler (implicit) 
Method

• Use estimate of derivative at next interval rather 
than present one to step forward.
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In some simple cases, we know f(tn+1, yn+1):
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Still 1st order, but more generally stable.

Backward Euler (implicit) 
Method

• For the demo case, y’(t) = -10*y
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More general

• Use equation solution methods to solve the 
equation for yn+1:
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See demo2ch6.m

Note that it is stable for a wider range of step 
sizes, even when they are very crude.  The cost is 
that in general, you must solve for yn+1 in some 
way on each iteration.
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Improvement?

• We have two first order methods that 
estimate the slope by:
– the present point: f(tn,yn) or fnthe present point: f(tn,yn) or fn

– The next point: f(tn+1,yn+1) or fn+1

• What might be an improvement, similar to 
the improvements we made in estimating 
derivatives?

• Average the two.

Average of forward and 
backward
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For the demo 
problem
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Substitute these values, and 
solve for yn+1
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see demo3ch6.m
second order

Runge-Kutta Methods

• Higher order methods that use intermediate points  
between tn and tn+1 to estimate the slope of y over 
the interval.

• Look at the Taylor expansion for y :• Look at the Taylor expansion for yn+1:
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The idea is to improve upon the previous 
methods by estimating the 2nd derivative above.

Estimate y”
Define:  
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Estimate y”
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Choice of α provides a range of 2nd order 
accurate, self-starting methods.

4th order Runge-Kutta RK4
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4th order accurate, self-starting, easy to 
program.
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Multistep Methods

• Use more than one point to calculate yn+1, but all 
these points are tabulated ones.

• Explicit: depend only on yn,, yn-1, etc. (Adams-,
Bashforth)

• Implicit: depend upon yn+1,yn, yn-1,etc.
(Recall backward Euler)  If used independently, 
must solve the equation for yn+1 as in Euler. One 
order more accurate than corresponding explicit 
method- but takes more calculations.

Multistep Methods

• Predictor-Corrector: 
– Use explicit to get approximation to yn+1.
– Use this estimate in implicit method to get improved 

l fvalue for yn+1.
– Superior to some other algorithms of same order.

• see demo4ch6.m

Systems of Diffl Equations

• Multiple 1st order equations that are 
coupled.  Solve in vector format, 
incrementing all elements of vector along 

i h h iwith each time step.
• Second order initial value problem:
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Can be recast as a system of two 1st order 
differential equations that are coupled.

Boundary Value Problems
• Shooting Methods:
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For a value of y’(a) we can solve the 2nd orderFor a value of y (a), we can solve the 2nd order 
initial value problem:

zayyayyyxfy a =′=′=′′ )(;)();,,(

This solution is denoted y(x;z)

The boundary condition is satisfied when y(b;z)=yb

Define and solve: F(z)=y(b;z)-yb = 0  (How?)

Boundary Value Problems
• Finite Difference Methods:
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This solution inteval [x0,xN] is divided into N steps.

Step size is h.

At each point xk, use finite difference 
approximations to the derivatives, yielding an 
equation for each point.

Involve k-1 and k+1 steps in central differences.

Finite Difference Methods:
This solution interval [x0,xN] is divided into N steps.

Step size is h.

At each point xk, use finite difference approximations to 
the derivatives yielding an equation for each pointthe derivatives, yielding an equation for each point.

Involve k-1 and k+1 steps in central differences.

Results in tridiagonal system of linear equations.
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Large k needed for practical situations.


