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Numerical Integration

Ch 5 of Turner
CSS455 Winter 2012

Definite Integrals as Areas
• Recall discussions 

in elementary 
calculus where 
you considered 
the definite 
integral of a 
function between 
two limits as the 
area under the 
curve of that 
function.
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• First idea:  approximate the function f(x) by an interpolant
polynomial p(x) and then integrate the interpolant exactly.

• Second idea:  Express the result as a sum over weighted 
values of  f(x) at fixed predetermined values of x:   an 
exact formula for the integral of p(x)

Approximate Numerical Method 
Interpolatory Quadrature

exact formula for the integral of p(x).
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Constant for the 
integral limits.

xk distributed evenly over the 
interval (a,b): f (x) is evaluated 
only at these points

Weights are fixed for all
quadratures of this type.

• This is an exact formula for the integral of p(x).
• If f(x) is a polynomial of  2nd order or less, then p(x) is an 

exact fit and the integral of f(x) is exact: Degree of
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exact fit and the integral of f(x) is exact:  Degree of 
precision here is at least m=2.  

• Exact formula for f(x) = 1, x, or x2

• Since the c’s are the same regardless of the form of f(x), 
we can write three independent equations for them, one 
based on each choice of f(x).

• This will provide another general way to obtain the values 
of the weights.

Zero order polynomial: Assume the area is 
equal to that of the rectangle formed by the 
line at the midpoint of the region.  
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Interpolation is of 
zero order.

Trapezoid Approx: Assume the area is equal to 
that of the trapezoid formed by the line between 
the limits.  
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Trapezoid Approx: Assume the area is equal to 
that of the trapezoid formed by the line between 
the limits.  

There is no 
cancellation 
of error here.
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Trapezoidal Rule: Assume the area is equal to 
that of the trapezoid formed by the line between 
the limits.  

Interpolant 
is of order 
one..
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Simpson’s Rule: Assume the area is formed by 
a parabola interpolating the limits and midpoint.  
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Simpson’s Rule: Assume the area is formed by 
a parabola interpolating the limits and midpoint.  

Interpolant 
is of order 
two.  There 
isis 
cancellation 
of error.
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• The coefficients 
{α,β,γ}depend upon the xk
and f(xk) values  
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The integral can be expressed in terms of these 
three data points (nodes) and the limits [a b].

Simpson’s Rule: Assume the area is formed by 
a parabola interpolating the limits and midpoint.  

This can be 
h t b
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true by 
algebraic 
substitution
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Activity 12: 
• For n=1,2,3 (linear,quadratic, cubic) degree 

polynomials you found that the integral of 
the interpolant took the form:
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• Where the ck’s depend only upon the 
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k
positions of the nodes:  the actual values of 
xk.  These ck’s are called the “weights,”  and 
this procedure for integration is called 
“quadrature.”

• This is an exact formula for the integral of p(x).
• If f(x) is a polynomial of  2nd order or less, then p(x) is an 

exact fit and the integral of f(x) is exact:  Degree of 
precision here is at least m=2.  

• Exact formula for f(x) = 1, x, or x2
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• Since the c’s are the same regardless of the form of f(x), 

we can write three independent equations for them, each 
one based on a special choice of f(x).

• This will provide another general way to obtain the values 
of the weights.

Three Eqns and Three unknowns
Select the three points
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To generate the first equation, choose f(x) =1:
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Equation #3: for f(x) = x2
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System of three eqns
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Solve by methods of Chapter 7 or by explicit 
algebraic elimination.
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These are the weights we
presented for Simpson’s 
Rule, obtained by 
integrating the parabola fit 
to the three points.

System of three eqns
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Claim: exact for general 
quadratic f(x) (precise for m=2)
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Exact integral Simpson rule integral
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Exact for m=2

What about f(x) cubic?

•The three-point 
quadratic 
interpolant p(x) 
cannot represent 
f(x) exactlyf(x) exactly.

•But the 
integration rule 
(Simpson’s) does
integrate f(x) 
exactly.  Why?

Newton-Cotes Rules
• In each case the set of m uniformly spaced

points is fit by an m-1 order interpolant pm-1.

• The integral of that interpolant between the g p
limits is the Newton-Cotes m-point rule for 
the approximation of the exact integral.
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Dot product

NC Demos

• Look at WNC.m, which provides the 
weights.

• Then look at NCCosine m which integratesThen look at NCCosine.m which integrates 
for several Newton Cotes Rules:
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• Then look at NCCosSqrt.m which integrates 
for several Newton Cotes Rules:
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NC Demos

• Then look at NCHumps.m which integrates 
for several Newton Cotes Rules:
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• Accuracy is a problem with a less well-suited 
function such as humps(x).

2 points Int=  -0.6927360139068717
3 points Int=  -5.8516016598080371
4 points Int=  12.3647470310060380
5 points Int=   8.9068659991608801
6 points Int=   4.1083984982332478
7 points Int= 8.76133847462559257 points Int    8.7613384746255925
8 points Int=  20.3119686539944090
9 points Int=  37.1667262265332570

10 points Int=  49.3473459511422020
11 points Int=  65.5474191610827010

Newton-Cotes Rules
• Error bounds can be calculated and turn out 

to be proportional to the size of the interval 
(b-a)d+2 , the magnitude of the d+1
derivative and inversely proportional to thederivative, and inversely proportional to the 
order of the interpolant
(m-1)d+2. (d=m or m-1)

• Formulas on page 127: need estimate of 
derivatives bound to be useful.

Page 127 error formulas

Improve Accuracy
• Gaussian quadrature: choose positions of nodes 

and weights to give maximum precision:  order is 
much higher. m nodes can yield 2m-1 order 
precision on the interval [-1, 1].

• Composite Rules: To obtain high accuracy• Composite Rules: To obtain high accuracy, 
divide the integral up into small regions that can 
be individually treated with accuracy (at 
reasonable values of m)

• The contributions are then summed.

Composite Rules
•The overall error is 
now also inversely 
proportional to N.

•The error can be 
recursively reduced 
by increasing the 
number of intervals 
usedused.

•Greater 
improvement can be 
achieved with 
adaptive spacing of 
the intervals.
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Composite Rules

Activity 13, Part I

Consider Simpson errors (m=3)
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For the simple (single panel) case, it can be shown 
that the error is given by:

For the N-panel case (N, m=3), the error 
approximation can be shown to be:
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For the N-panel case (N, m=3), the error 
approximation can be shown to be:

( )( ) ( ) N
abfSE hab

N 2
)(h  where)( 2

]4[
180

4 −=−= − ξ

NN EE ⎟
⎠
⎞

⎜
⎝
⎛≈
16
1

2

N2

( )( ) ( ) N
abfSE

hab
N 2

)(h  where)( 2
]4[

1802

4
2 −=−= − ξ

NN EE ⎟
⎠
⎞

⎜
⎝
⎛≈
16
1

2

( ) ( )
( )15

16

22

2

NNNexact

NexactNexact

SSSI
SISI

−≈−
−≈−

( )

( ) ( )
15

2
2

22

NN
Nexact

NNNexact

SSSI −≈−

Review single panel results
Run NCCos and NChumps demos.

Activity 13 part II
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Activity 13 part III
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Example 2.   QNC(m,n) error for integral of humps from 0 to 1
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Example 1.   QNC(m,n) error for integral of cos from 0 to pi/2

0 10 20 30 40 50 60 70

10
-8

n = number of subintervals.

0 10 20 30 40 50 60 70

10-15

10-10

10-5

m = 3

m = 5

m = 7

n = number of subintervals.

E
rro

r i
n 

Q
N

C
(m

,n
)

Adaptive Composite rules

• Distribute the nodes unevenly to improve 
precision, instead of just decreasing them 
uniformly with each iteration.y

• How would you decide how to do that?  
Think of an iterative procedure…

Matlab Integration of humps with 
adaptive procedure Quad (m=3).

[int,count] = quad(fname,a,b,tol,1);

Improper Integrals

• Divide the improper integral into two pieces, one 
of which is to be neglected and the other can be 
evaluated numerically:
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•Divide up the acceptable error ε in half and find a 
value “b” that gives a bound for the second integral 
that is ≤ ε/2.  

•Evaluate the first integral with an error bound of 
ε/2

Numerical Differention

• Recall the fundamental definition:
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Activity: Part IV
• With your partner, determine the 

approximate value of the derivative of 
cos(x) at x= pi/2, and calculate the error for 
th l f h i d t tthe values of h assigned to your team.

h
xfhxfxf )()()( 00

0
−+

≈′

Exact answer:  f’(pi/2) = -1.0 

Finite Difference Approximation

T f

],[)()()( 00
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0 hxxf
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• Two sources of error:
– Inherent in using finite difference approx: 

proportional to magnitude of h
– Numerical due to subtraction of two similar 

terms: inversely proportional to magnitude of h
Trade off here!

Truncation or calculus error
• Expand f(x0+h) in Taylor Series
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Solve for derivative:
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1st order 
accurate

2nd

derivative 
gives error 
magnitude

Numerical error
• Similar error in 

f(x0) and f(x0+h): δ δ

δ
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Total computational error in finite difference: 2δ/h
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Total Error
• E = ch + 2δ/h  {c = (1/2)f’’(θ)}
• Minimum error found  by differentiating:

• dE/dh = c - 2δ/h2 = 0
• Solution

ch δ2=

•There is a value of h for which the error in 
this approximation to the derivative is a 
minimum.
•Need to form estimate c of truncation error

Other divided difference Formulae
• Negative (backward) divided difference
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Average of positive and negative: Two-sided difference
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Two-sided error is smaller
• Taylor Series:
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Two-sided error is smaller
• Solve for f’(x):
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The central difference formula above is 2nd order accurate, 
with the 3rd derivative expressing the truncation error.

2nd Derivative
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If we were to approximate this derivative as a finite 
difference in a set of grid points, it would require three 

i t d ith idpoints , x0, and one on either side.

2nd Partial Derivative
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If we were to approximate this partial derivative as a 
finite difference in a set of grid points, it would require 
th i t d ith idthree points , x0, and one on either side.

In a 2D problem, where we have f(x,y), we may need 
both 2nd order partial derivatives.  We would then be 
using the central point and points one either side and 
above and below it for both derivatives. (5 pts total)
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laPlace equation
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With boundary 
conditions at edges of 
region.
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These finite difference equations for the laPlace equation look just 
like the equations we solved in the rat maze.  (The boundary 
conditions would be the food pattern.)
This is motivation for efficient algorithms for very large sets of 
equations (fine grids of points) in that type of problem.

Optimization
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General Task
• Given a function of several variables, 

f(x1,x2,...,xn), find its minimum value subject to a 
set of constraints:
g(x1,x2,...,xn) = 0 and h(x1,x2,...,xn) ≤ 0
– f is scalar, g and h may or may not be.
– feasible point is any point within domain of f

that satisfies the constraints.
– unconstrained optimization is an important 

subclass.

General Task in 1D
• Given a function of a single variable, f(x), find its 

minimum value(s).
• Constraint is commonly placed on acceptable 

range of the independent variable xrange of the independent variable x.
• feasible point is any point within domain of 

f that satisfies the constraints.

• Global minimum
occurs at x* such that
f(x*) ≤ f(x) for all
feasible points x.

• Local minimum -1500
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-500

0

500

occurs at x* such that
f(x*) ≤ f(x) for all
feasible points x in the 
neighborhood of x*. -10 -5 0 5

-3500

-3000
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-2000

Extrema occur when derivatives 
vanish (stationary points)

• 1-Dimensional f(x)
• At minimum or maximum 

of f(x), the derivative of f
vanishes:

• Multidimensional
• At extrema, all partial 

derivatives vanish (the 
gradient = 0)
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• As a first step, graph the function f(x) over 
the interesting domain.  

• Root finding and minimization are related: 
we could search for a root of derivative 
instead of a minimum of parent function.

• Unimodal:  Single minimum in domain, and 
function is strictly increasing on one side 
and decreasing on other side of minimum.  

Find a bracket containing 
extremum

• From starting point x0 explore points 
distributed as
xk = xk-1 + 2k-1h  (see text for examples)k k-1 ( f p )

• When three successive points satisfy:
x < y < z     and
f(y) < f(x), f(z), then the extremum is 
bracketed.

• Derivative of f(x) can be used to speed 
process.
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Golden Section Search

• Pick two points within unimodal interval [a,b] 
such that x1 = a + (1-τ)(b-a) and x2=a+ τ(b-a), 
with τ= 0.618.

51
2
+

=τ

• If f(x2) < f(x1) , then minf must lie in [x1,b]

a bx2x1

bx1a x2

Linear Convergence - failsafe

•

Now if f(x1) < f(x2)

bx1a x2

• Repeat until [a,b] are as small as desired.
• The choice of τ causes coincidence of abscissas so 

that only one new evaluation is needed.

x2a bx1

Parabolic Interpolation

• Convergence is improved by parabolic (quadratic) 
interpolation.

• Evaluate the function at three points: f(x1), f(x2), 
f(x )f(x3) .

• Fit these three points to the parabolic form: 
g(x) = ax2 + bx +c.  by solving 3 eqns for three  
unknowns  a,b,c.  or determine the divided 
difference polynomial, which is equivalent.

• Find the minimum of g(x) analytically , and use 
that value of x as one of the new triple of x-values.

• Convergence is not guaranteed within the 
unimodal interval, but when converging it will do 
so superlinearly.

• Matlab fminbnd uses a golden section to get started 
and then finishes up with parabolic interpolation.

• Precision: The function f is fairly insensitive to 
changes in x at the minimum.  The value of x will 
be determined to less precision than f, typically 
about (ε)½

• Matlab Minimizer1D.m for f(x) = x2 -2x +2

Functions of several variables

• A Function of several variables can be minimized 
with the library call to fminsearch.

• Convergence can be slow here due to the large 
number of degrees of freedom in exploring a 
multidimensional surface rather than a line as is 
the case with f(x).

• For the case of two dimensions F(x,y), use of 
contour plots to generalize the surface can be 
useful.

Contour Plots

• For the function F(x,y), each contour on the 
surface represents a curve of constant value 
of F(x,y).

• Compare to topographic contour maps, 
where the curves are constant elevation as a 
function of latitude and longitude.

• Matlab has convenient contouring 
functions.
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Contouring
Set up a grid in both x 
and y directions.  
meshgrid will make 
such a grid from the 
vectors.

Creates two (9 x 7) arrays

X contains the x value of each point; 

Y contains its y-value.

The X and Y grids

Evaluate the Function on this grid

)( 22

),( yxeyxyxf +−⋅=

Contour plot with manual labeling

1

2

3

4

0.0367-0.0367

The y-axis has 
been given the 
usual 

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

-0.0367

0.0367

orientation, 
even though 
the y-grid had 
the smallest 
value of y at 
the top (1st 
row)

Contouring Summary

• Establish x and y vectors with the grid 
definition.

• Use these vectors as arguments to meshgridUse these vectors as arguments to meshgrid
to establish the rectangular X and Y grids.

• Use X and Y with pointwise operators to 
evaluate the function f(x,y) over these grids.

• Plot contours with contour.

Minimization with fminsearch
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examples

• d-function
• rosenbrock


