Numerical Integration

Ch 5 of Turner
CSS455 Winter 2012

Definite Integrals as Areas

. Recall discussions

wf in elementary

calculus where
you considered
the definite
integral of a

_ | function between
two limits as the
area under the

b
Jf(x)dx =area under f(x) fromx =atox =b. curve of that

a

function.

Approximate Numerical Method
Interpolatory Quadrature

 Firstidea: approximate the function f{x) by an interpolant
polynomial p(x) and then integrate the interpolant exactly.

« Second idea: Express the result as a sum over weighted
values of f{x) at fixed predetermined values of x: an

t fi la for the integral of p(x).
exact formula for the integral of p(x) Weights are fixed for all

quadratures of this type.

b- a)i C\k/f (x,)
k=0 /‘

J rods= [ ploras =

Constant for the x, distributed evenly over the
integral limits. interval (a,b): f(x) is evaluated

only at these points

[ fdv = [ poydy =Y e ()

« This is an exact formula for the integral of p(x).

« Iff{x) is a polynomial of 2" order or less, then p(x) is an
exact fit and the integral of f{x) is exact: Degree of
precision here is at least m=2.

« Exact formula for f{x) = 1, x, or x?

¢ Since the ¢’s are the same regardless of the form of f(x),
we can write three independent equations for them, one
based on each choice of f{x).

o This will provide another general way to obtain the values
of the weights.

Zero order polynomial: Assume the area is
equal to that of the rectangle formed by the
line at the midpoint of the region.

j‘f(x)dx ~ ji p(x)dx =j(c0nst )dx =

= (const (b —a) = f("%)(b -a)

>

Interpolation is of
zero order.

Trapezoid Approx: Assume the area is equal to
that of the trapezoid formed by the line between
the limits.

_ /)~ f(@
o=t W[ (b-a) j\

[ £ = [ pxydx =~
=f(@):(b-a)+$(b=a)Lf(b)~ f(@)]




Trapezoid Approx: Assume the area is equal to

that of the trapezoid formed by the line between
the limits.

) There is no

| Y cancellation
e

b pr of error here.

0 1 2 3 4 3 & @

[ @~ fla)-(b-a)+4(b-a)-[/ )~ f(a)]

Trapezoidal Rule: Assume the area is equal to
that of the trapezoid formed by the line between

the limits.
@) Interpolant
o is of order
y one..

1] 1 ? 3 4 B

[ Fdx=Lb-a) 11 @)+ F®)]

Simpson’s Rule: Assume the area is formed by
a parabola interpolating the limits and midpoint.

o

jlf(x)dx z:b[p(x)dx =j‘ [a + fx+ ]dx

Simpson’s Rule: Assume the area is formed by
a parabola interpolating the limits and midpoint.

Interpolant
on _ is of order
two. There
3000 .
is
o cancellation
- a7 of error.

o

1 2 [ 2

!f(x)dx z! p(x)dx =(ax+ §x2 " 73/x3}

a

b

jp(x)dx=J(a+ﬂx+w)1x:wc+fxugxa

b

a a

* The coefficients

{a.,B,y}depend upon the x, {a,f(a),b,f(b), ath f(“b )}

and f(x,) values 2 _

The integral can be expressed in terms of these
three data points (nodes) and the limits [a b].

Simpson’s Rule: Assume the area is formed by
a parabola interpolating the limits and midpoint.

4000
. This can be
shown to be
o true by
- algebraic
. substitution

[ e =L b-a) L1 @)+47(2)+ /)]




Activity 12:

* For n=1,2,3 (linear,quadratic, cubic) degree
polynomials you found that the integral of
the interpolant took the form:

[Fdr = [ pydv=3 e,/ ()

[ fdv = [ ploydy =Y e f ()

* Where the ¢, ’s depend only upon the
positions of the nodes: the actual values of
x;. These ¢;’s are called the “weights,” and
this procedure for integration is called
“quadrature.”

[ f@ydx~ [ p(r)de =" ¢, f(x,)

« This is an exact formula for the integral of p(x).

» Iff{x) is a polynomial of 2" order or less, then p(x) is an
exact fit and the integral of f{x) is exact: Degree of
precision here is at least m=2.

« Exact formula for f{x) = 1, x, or x?

 Since the ¢’s are the same regardless of the form of f(x),
we can write three independent equations for them, each
one based on a special choice of f{x).

o This will provide another general way to obtain the values
of the weights.

Three Eqns and Three unknowns

Select the three points x= {a,ﬂ,b}
2

To generate the first equation, choose f{x) =1:
b b ,

j F(x)dx = j Odx=x =b-a

a a

If(x)dx =c¢ f(x)+e f(x)+e, f(x)=c+c¢ +e,

¢t +c,=b—a, (eql)

Equation 2: for f{x) = x o {a a+b b}
B

ff(x)dx:f(x)dx :%xz"; _ —a%

[ 1dx=cof () +e f(r)+eaf (v) = ca+a(#52)+eb

b -a?
ac, + (HTH?)Cl +be, = 5 (eq2)

Equation #3: for f{x) = x>

ff(x)dx - 'ijdx 1 = (v —a%

a

J).f(x)dx =c¢ f(x)+af(x)+e, f(x)= Coaz +¢ (a;b )2 + Czb2

3 3
ae, +(12f ¢, + b, =2 3" . (eq3)




System of three eqns

1 1 1 |(c b-a
b _ 2 2
a “ bilc¢|= (b -a )/ 2
2
@ (2 b le) \(B-a)s
Solve by methods of Chapter 7 or by explicit
algebraic elimination.
These are the weights we
C (b —a )/ 6 presented for Simpson’s
¢ |= 4 (b _ a)/6 Rule, obtained by

integrating the parabola fit
c, (b - a)/6 to the three points.

System of three eqns

% (b - a)/ 6

¢ |=| 4(b-a)/6

G (b - a)/ 6
]jf(x)dx ~(f(a) sles2) f(b){ c}

b
b

Claim: exact for general
quadratic f(x) (precise for m=2)

f(x)=(C+Dx+Ex?)

s = a2 ey (22 )

6

I reone =2t (2 ey (2 )

6

_ b
To check for f(x) = C J.Cdx: Cx‘i —C(b-a)

ff(x)dx z(b;“j(f(a)+4f(%)+f(b))=

_ [bga](6C)= C(b-a) Precise for m=0

jf(x)dm(”;“j @+ e (22 )

To check for f(x) = C + Dx

b

8 —

6
Precise for m=1
(C+Dx)ix=Cxl 22 = C(b—a)+§(b2 —a’)

b b—a
.[f(x)dx~[ ;

Jrtaasess )=

=(b;aj(C+Da+4(C+§(a+b))+C+Db)=

=[”;aj(6c+1)(3a+3b))=C(b—a)+§(b—“)(b+“)

6

b — p— —

[ rea z(” 6”]f(a)+(4(b ”)jf(%){b 6”)f(b)
b

To check for f(x) = C + Dx + Ex?

b
b b b
J.(C+Dx+Ex2)dx=Cx‘ +Qx2‘ +£x3‘ =
a 2 a 3 a

a

:C(b—a)+§(b2—az)+§(b3—a3)

t D E
.[(C+Dx+Ex2)dx=C(b—a)+E(b2—a2)+§(b3—a3)




Exact integral Simpson rule integral

E

a

b-a
6

jf(x)dm[ j(f(a)+4f(“7*”)+f

:(b%)(C+Da+EaZ+4(C (a+b)+£ ¥ +)+C+Db+Eb2):
:(b%“)(éc+1)(3a+ +2E(a? +b? +b))=

:C(b—a)+%(b—a)(b+a)+_%(b—a)(a2 +bz+ab)

What about f(x) cubic?

Cubic Functien

*The three-point 150
quadratic
interpolant p(x)
cannot represent
f(x) exactly.

*But the
integration rule
(Simpson’s) does
integrate f(x) 10 (a+b)2
exactly. Why?

L

50

(0]

150 &
3

Newton-Cotes Rules

+ In each case the set of m uniformly spaced
points is fit by an m-/ order interpolant p,, ;

* The integral of that interpolant between the
limits is the Newton-Cotes m-point rule for
the approximation of the exact integral.

j-f(x)dx ~ j.pm—l (x)dx = QNC(m)

Newton - Cotes rules

m Qncam)

(b_ a)f(%) (mid-point)
2 (b%a)(f(a)"'f(b)) (trapezoid)

300 | Elra)-ar(52)+ )
(Simpson’s Rule)

m-1
(b—a)z ckf(xk) Dot product
k=0

—_

NC Demos

* Look at , which provides the
weights.

* Then look at which integrates
for several Newton Cotes Rules:

/2

[ cos(x)dx =sin(x)[}* =1
0

NC Demos

* Then look at which integrates
for several Newton Cotes Rules:

7l2
1
co8(X) ———— |dx =
![ ) \/x+0.01j
= (sin(x)-2.*sqrt(x + 0.010)[* =
= —1.314594462




NC Demos

* Then look at which integrates
for several Newton Cotes Rules:

3
J( 12 + 12 —6de =
2\ (x=0.3)"+0.01 (x-0.9)"+0.04

3
= (-6x +10arctan(10x - 3.) + Sarctan(5x - 4.5)‘0 =
=23.96807984

» Accuracy is a problem with a less well-suited
function such as humps(x).

2 points Int= -0.6927360139068717
cle 3 points Int= -5.8516016598080371

clear all

Cloze all 4 points Int= 12.3647470310060380
sewton Cates integration || 5 points Int=  8.9068659991608801

tRange is 0 to pisZ

freme = 'homps' s 6 points Int= 4.1083984982332478
b 7 points Int= 8.7613384746255925
nlin-11; 8 points Int= 20.3119686539944090
form - Tfmrgt:;' 9 points Int= 37.1667262265332570

fx - zevos(lm): 10 points Int= 49.3473459511422020

¥ = linspacelabwl | 11 points Int= 65.5474191610827010

fx = feval{fname,x} ;

integ=(b-a)¥(fx%c);
disp (sprintf(' %2Z.0f points Int= %20.16£'  m,inteq))

Newton-Cotes Rules

* Error bounds can be calculated and turn out
to be proportional to the size of the interval
(b-a)?*? , the magnitude of the d+1
derivative, and inversely proportional to the
order of the interpolant
(m-1)42 (d=m or m-1)

» Formulas on page 127: need estimate of
derivatives bound to be useful.

Page 127 error formulas

fh:'r;_m —p-ayf(e+ by =L ziﬁf"[&nd (5.10)
where h = b — ;
ff{xld-l' = h—'z—” (@) +£(b)] = - i,;’”’—!_f"r.en (5.11)
where again b = b —a, and
j:h.:'{.t]«‘-r - ’3' [f(a) +4f (a+ h) +f(b)] = — &:—;:"—lf” (&s) (5.12)

where h = (b —a)/2. Here the points £y, &r &5 are "mean value poinis’ in the
interval {a,b).

Improve Accuracy

+ Gaussian quadrature: choose positions of nodes
and weights to give maximum precision: order is
much higher. m nodes can yield 2m-1 order
precision on the interval [-1, 1].

» Composite Rules: To obtain high accuracy,
divide the integral up into small regions that can
be individually treated with accuracy (at
reasonable values of m)

* The contributions are then summed.

*The overall error is

. now also inversely
Composite Rules oromertional to V.

*The error can be
recursively reduced
sxo) /| by increasing the
number of intervals
used.

*Greater
improvement can be
achieved with
adaptive spacing of
the intervals.




Composite Rules

. Activity 13, Part |

Consider Simpson errors (m=3)

For the simple (single panel) case, it can be shown
that the error is given by:

E(S) =5 £9(5, ) where h = -9)/

For the N-panel case (N, m=3), the error
approximation can be shown to be:

E(S,) =~ 19(g, ) whereh = (0 =9)/

Consider Simpson errors (m=3)

For the N-panel case (N, m=3), the error
approximation can be shown to be:

E(S,) =~ £9(g,)whereh =0~ 9)/

E(S,y)= — 11180 f[4](§2)Whereh =(b-a)

1
EZN = [RJEN

2N

\

16(Iexact _‘S'2N)z (Iexact _SN)
15(1 : _SZN)z Son =Sy

S,v =S
(Iexact - SZN ) ~ 2N N )15

Review single panel results

Run NCCos and NChumps demos.

Activity 13 part 11




Activity 13 part III

Example 2. QNC(m,n) error for integral of humps from 010 1

Example 1. QNC(m.n) error for integral of cos from 0 to pil2

0 10 20 20 0 50 60
= number of subintenls. :

Adaptive Composite rules

* Distribute the nodes unevenly to improve
precision, instead of just decreasing them
uniformly with each iteration.

* How would you decide how to do that?
Think of an iterative procedure...

Matlab Integration of humps with
adaptive procedure Quad (m=3).

|[int,count] = quad(fname,a,b,tol,1); ‘

Improper Integrals

 Divide the improper integral into two pieces, one
of which is to be neglected and the other can be
evaluated numerically:

I= Tf(x)dx = _h[f(x)dx +j F(x)dx

«Divide up the acceptable error ¢ in half and find a
value “b” that gives a bound for the second integral
that is < /2.

*Evaluate the first integral with an error bound of
€/2

Numerical Differention

» Recall the fundamental definition:

' T J (g +h) = f(x,)
f(xo)*%im& i

o
This would be true for negative or positive 4.

f'(x()) — lhlng f(XO)_Z(XO _h)

N




Activity: Part IV

» With your partner, determine the
approximate value of the derivative of
cos(x) at x=pi/2, and calculate the error for
the values of & assigned to your team.

f(x,) ~ S (x +/’27f(x0)

Exact answer: f’(pi/2) =-1.0

Finite Difference Approximation

SO+ 1) = f(x)
h

S'(x) = = J1x05 %, +h]

» Two sources of error:

— Inherent in using finite difference approx:
proportional to magnitude of /4

— Numerical due to subtraction of two similar
terms: inversely proportional to magnitude of /

Trade off here!

Truncation or calculus error

» Expand f(x,+h) in Taylor Series

S+ = ) B )+ )+ 70

hZ

FOu W) =G+ )+ SO,

Solve for derivative: aceurate
zm\

f’(xo) = M —Ef"(pr derivative

gives error

magnitude

F(x) = f(x) =

Numerical error
« Similar error in fx)-f(x) =8
Sxg) and fx)th): 8 Fx,+h)— f(x, +h)~ S
Sy +h) = f(x) [+ =[(x,)
h h

)= Py = LGt =T 0 )= )

Total computational error in finite difference: 26/A

£ =)~ 2 f :%

Total Error

s E=ch+20/h {c=(1/2)f(O)
* Minimum error found by differentiating:
e dE/dh = c - 20/°=0
* Soluti -
olution h= 2%

*There is a value of 4 for which the error in
this approximation to the derivative is a
minimum.

*Need to form estimate ¢ of truncation error

Other divided difference Formulae

* Negative (backward) divided difference
()= f(xy—h
f) < LEVZLEZD g )

Average of positive and negative: Two-sided difference

£1(x,) z%[f(XO)_hf(xﬂ_h) N f(x, +hh)—f(x0)}

S (o +h) = f(x —h)j

f'(xo)z( 2




Two-sided error is smaller

* Taylor Series:

e +h>:f(xo)+hf’(xo)+h7f"(xo>+%f"'<xo)+...
2 3
e —h)=f(xo)—hf'(xow%f"(xo)—%f“(xm...

Subtract second from first:

S +m)= (% *h):2hf'(xn)+%fm(xo)+m

Two-sided error is smaller
* Solve for f’(x):

2hf"(x0) = f (o + 1) = f (%, —h)—%f"'(onW

f(xo"'h)_./{(xo_h)_}L2

oy /©

J'(x) =

The central difference formula above is 27 order accurate,
with the 3" derivative expressing the truncation error.

2nd Derivative

o L2 ) S o)

If we were to approximate this derivative as a finite
difference in a set of grid points, it would require three
points , X,, and one on either side.

2nd Partial Derivative

S (o y0) | SO+ hy) =2/ (%, 30) +f (g = hoyy)
ax? h*

If we were to approximate this partial derivative as a
finite difference in a set of grid points, it would require
three points , X, and one on either side.

In a 2D problem, where we have f{x,y), we may need
both 2™ order partial derivatives. We would then be
using the central point and points one either side and
above and below it for both derivatives. (5 pts total)

S (0x3) _ F (g Yo +h) = 2f (K. ¥o) + f (50: Yy =)
o’ "

laPlace equation
, o
ViF(x,y) :[y-%—ay—zjf'(x,y)zo

(f(xn 0,3 =21 G ) ¥ L = h ya) S Kas by 1) =21 (0, 30) + S (K5 Yo ’h)jﬁ(x ¥)=0
n 5 ’

[ S0+ ho i) =4S G 70) £ (= by 30+ G 3 1)+ f G = h)) 3 =0
h ’

These finite difference equations for the laPlace equation look just
like the equations we solved in the rat maze. (The boundary
conditions would be the food pattern.)

This is motivation for efficient algorithms for very large sets of
equations (fine grids of points) in that type of problem.

Optimization

10



General Task

¢ Given a function of several variables,

f(X,X55.--,X,), find its minimum value subject to a

set of constraints:

2(X,X,....X,) = 0 and h(x X,,....x,) <0

— fis scalar, g and # may or may not be.

— feasible point is any point within domain of /'
that satisfies the constraints.

— unconstrained optimization is an important
subclass.

General Task in 1D

+ Given a function of a single variable, f(x), find its
minimum value(s).

Constraint is commonly placed on acceptable
range of the independent variable x.

* feasible point is any point within domain of
fthat satisfies the constraints.

* Global minimum

occurs at x” such that ]
1) <f(x) for all )
feasible points x. .
» Local minimum s
occurs at x” such that an)
SJ) <f(x) for all =
feasible points x in the am
neighborhood of x™. o + . L

Extrema occur when derivatives
vanish (stationary points)

« 1-Dimensional f(x)

¢ At minimum or maximum
of f{x), the derivative of
vanishes:

e Multidimensional

* At extrema, all partial
derivatives vanish (the

gradient = 0)
daf d_o_ _F_,
dx = . o, ox, | o,
Vf=0=(1]el+(i]ez +~~+[1
ox, 0x, ox,

b

* As a first step, graph the function f{x) over
the interesting domain.

* Root finding and minimization are related:
we could search for a root of derivative
instead of a minimum of parent function.

e Unimodal: Single minimum in domain, and
function is strictly increasing on one side
and decreasing on other side of minimum.

Find a bracket containing
extremum

» From starting point x, explore points
distributed as
X, =X T 25k (see text for examples)
* When three successive points satisfy:
x<y<z and
f(y) < f(x), f(z), then the extremum is
bracketed.

Derivative of f(x) can be used to speed
process.

11



2
Golden Section Search ~_ 1+v5

Pick two points within unimodal interval [a,b]
such that x1 = a + (1-t)(b-a) and x2=a+ t(b-a),
with = 0.618.

a x1 x2 b

If f(x,) < f(x,) , then minf' must lie in [x1,b]

a x1 x2 b

Linear Convergence - failsafe

a x1 x2 b

Now if f(x1) < f(x,)

a x1 x2 b

» Repeat until [a,b] are as small as desired.

» The choice of t causes coincidence of abscissas so
that only one new evaluation is needed.

Parabolic Interpolation

Convergence is improved by parabolic (quadratic)
interpolation.

Evaluate the function at three points: f(x,), f(x,),
f(x3) .

Fit these three points to the parabolic form:

g(x) = ax? + bx +c. by solving 3 eqns for three
unknowns a,b,c. or determine the divided
difference polynomial, which is equivalent.

Find the minimum of g(x) analytically , and use

that value of x as one of the new triple of x-values.

Convergence is not guaranteed within the
unimodal interval, but when converging it will do
so superlinearly.

Matlab fininbnd uses a golden section to get started
and then finishes up with parabolic interpolation.
Precision: The function fis fairly insensitive to
changes in x at the minimum. The value of x will
be determined to less precision than £, typically
about (g)”

Matlab for f{x) = x? -2x +2

Functions of several variables

A Function of several variables can be minimized
with the library call to fminsearch.

Convergence can be slow here due to the large
number of degrees of freedom in exploring a
multidimensional surface rather than a line as is
the case with f(x).

For the case of two dimensions F(x,y), use of
contour plots to generalize the surface can be
useful.

Contour Plots

* For the function F(x,y), each contour on the
surface represents a curve of constant value
of F(x,y).

» Compare to topographic contour maps,
where the curves are constant elevation as a
function of latitude and longitude.

+ Matlab has convenient contouring
functions.

12



Set up a grid in both x
C and y directions.
ont meshgrid will make

sContour demo such a grid from the
- clear all
) vectors.
- cloze all

%3et up a grid, ewaluate the function on the
% grid and then contour it

#lo=-5; Creates two (9 x 7) arrays
xhi

¥lo
vhi
¥ = linspace Txhi, 7): . .

v = lingpae® (vlo,¥hi,9j; Y containsitsy-value.

X contains the x value of each point;

The X and Y grids

[X ¥1“% meshgridix,¥);
sDisplay the grids

% ¥ walues increase lefr to right

%% values increase top to bottom

% The (1,1) element of the grid arrays
iz the upper left element.

5
- X
T

-3 -2 -1 ] 1 2 3

-3 -2 -1 [} 1 2 3

-3 -2 -1 ] 1 2 3

-3 -2 -1 ] 1 2 2

-3 -2 -1y =

-3 -2 -]

-3 -2 -1 -n -n -4 -4

-3 -2 -1 -3 -3 -3 -3

-3 -2 -1 -2 -2 -2 -2
-1 -1 -1 -1
] ] ] [}
1 1 1 1
2 2 2 2
3 3 3 3
[ [ [ [

N
-3 -3 -3
2 -2 -2
1 1 A1
[ [ [
1 1 1
2 2 2
3 3 3
4 u u

Evaluate the Function on this grid

[¥ ¥] = meshgridix,v):

X

T

tEwvaluate the function on this grid
F = (Y.*X).%(exp(-(X."2 + ¥.%2))):
figure

¢ =Contour (%x,v,F,9);
clabel (o, 'manual')

—(x*+y%)

f(x,y)=yx-e

Contour plot with manual labeling

The y-axis has
been given the
usual
orientation,
even though
the y-grid had
the smallest
value of y at
the top (1st
row)

Contouring Summary

* Establish x and y vectors with the grid
definition.

» Use these vectors as arguments to meshgrid
to establish the rectangular X and Y grids.

» Use X and Y with pointwise operators to
evaluate the function f{x,y) over these grids.

 Plot contours with contour.

. . 0IIN =
Mlnlmlz 1.000000000125413&+000 1.

iM3Tng THins Frow watleD

sfirst look at the mety .. _
clear

close all

cle

2.9566157641448762-016

0000000004223166+000

%1 = linspace(-1.5,1.5,120};
%z = linspace(-.5,1.5,120);
[%,V]=neshgrid{xl,x2)

Fvec = vectorize(inline{'100% (g-x¥x] 2 + (1-x)*2','x','y']):

F o= Fvec(X,¥);

v = [300,200,100,60,30,20,10,5,3,2,1,.11;

[C h]l=contour (X, ¥, F,v);

clabel (C,h);

sclabel (C, 'manual'):

pause

tol=1.E-8;

xguess = inpue('enter x1,x2 as rov vector muess')
oprions = optimser ('display’, ‘Iter’, 'TolX', tol):

[3MIN Fuin] = fminsearch(inline('100%(x(2)-x(1)7x(1)]42 + (1-x[1))*2'),xmuess, ...

options)
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examples
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