Chapter 3
function evaluations

CSS 455 Winter 12
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Two Important Series

Geometric Series, converges

for all |x] < 1.

1 Nk 2
—— =) X =1+ X+ X" +---
I-x i3

Exponential series, converges

for all x
L X« X
e 7§E71+x+5+§+---
0 k 2 3
X X X
e’ = E =l Xt —
= k! 2!
N-T K
Recall, that for N-term e~ X
imation: ~
approximation kI
The Error bound 1 xN
. <
goes like xN: N = (N=D!I N —x

If x is doubled for an 8-term approximation,
the error bound goes up by 28 ( x 256)




For eX with x=4:
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N 8 9 10

Ey 3.2508 |1.3003 |0.4816
f(4) 54598 |54.598 |54.598
E\/f(4) 0.0595 |0.0238 |0.0088
Rel Error % |5.95% |2.38% |0.88%
4‘Activity 7

From Activity 8 (N=8):

X 4 2 1

8-term f(x) |51.8063 |7.38095 |2.71825
Exp(x) 54.59815 |7.389056 |2.718282
Rel Error % [5.11% 0.11% |0.0012%
Derived f(4) 54.47846 |54.5959117
Rel Error % 0.22% |0.0041%

From Activity 8 (N=8):

For x=4, the error using( 8-term f(2))"2 is 0.22%
For x =4, the error using 11-term f(4) is 0.28%

Beyond the 8-term evaluation, how many
operations are involved in obtaining f(4) = f(2)2 ?

Beyond the 8-term evaluation, how many
operations are involved in obtaining
the 11-term f(4)?

Is there such a thing as a “free lunch™?




Evaluate In2 jldx = In(x)
X

1n(1_x)=j[L)d(1_x)=_ Lo

1-x

X3 X
:—I(1+x+x2+..4):ix=—(x+7+?+..,j

2\ X
__zk+1

k1 The truncation error in this

alternating series is less than the

first pmitted term. It will take 10°
b to get the value correct to 9

nal places

k=0

? Xis large!
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m‘:g} = ln(l + X)— ln(l - X) for (‘X‘ <1)

Evaluate In2

What size is x
here?

ol

Evaluate In2

1+X 2x* 2% X X
— | = 22Xt —F—+ - [ =2 X —F—+
1-x 3 5 3 5

*What would be the truncation error here after N
terms (k=N-1)?




Evaluate In2

N

)z
gZ

“( 2k+1 3

N —

Consider this series and get an upper bound on it
That will yield an upper bound on Ey

}
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Evaluate In2

L. K0 SN]SO
N +3)3%) " (2N +5)3%)

7

—

Geometric Series: Eq 3.1, with x=(1/3)?

_

With that bound for the series:

(s i

N3)E) NI
SOTE R W

With N=9, E<1.02x10-1°

Converges rapidly because x is now
forx=1/3 small and powers of it diminish rapidly.

L e e

3 34 (2k+1)3%




Series for &t

In Example 2, the equation arctan(1) = n/4 was used
along with a series expansion for arctan(x):

X3 XS X7
arctan(X) = X——+-———+
35 7

With x = 1, the series converges slowly (10'°
terms) to yield © to double precision:

zzarctan(l):l—ljul_ljb..
4 357
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How do we know the # of terms?

zzarctan(l):l—l-|rl_l+...
4 357

In an alternating series, with each term smaller than
the preceding one, the magnitude of the truncation
error is bounded by the first term omitted.

So to get an error less than 1073, you include the first
thousand terms.

To get double precision result (rel error 10-6), you
need approximately 10 terms!!

Series for «t

X3 XS X7
arctan(X) = X——+———+
35 7

With x = 1/4/3 the series converges more
rapidly.

In Example 5, it is recast as:

(5]
arctan| —— |=—

J3) 6

Now the series has odd powers of {1/¥3} and
converges rapidly (15 terms for single precision)




Series Solutions

« Can be very slowly convergent

 Try to recast series so that it is going as a
power series in a number less than 1.

Then the terms will get small more rapidly.

e Sometimes called “range reduction”

2/8/2012

Recall Square Root

» A form of fixed point iteration.
x*=N
XM — N/x["’”
x*=N The last iterant in the blue box is

2 2 used after the procedure is scaled to
2x"=x"+N require the square root of a number

X2 = (%)(Xz s N) between 0.25 and 1.
=(1 N )

x=(%)lx + A

XM — (%)(X[n,u + NA["’”) see demosqrt.m

Square root Iteration

Any number A can be written in the form
n
A=mx4", where

nisintegerand t <m<1

Then the square root is given by: /A _ /m x 2n

The general square root problem reduces to finding the square
root of a number between 1/4 and 1.




Do not study further in book

Cordic is general for many mathematical
operations (multiply and divide) and many
functional evaluations.

Always involves only shifts and adds
Can predict the number of terms needed

Can be efficient in software, but is very
well suited to hardware implementations.
Read the rest of the chapter for examples
only.
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Polynomial Interpolation

Chapter 4 of Turner
CSS455 Winter 2012

Interpolation

* Given a data set (x;,y;)), i=1,...,n
seek a function p(x), such that
px) =y, i=1,..,n.

* (x,y;) could be tabular data or data
obtained by evaluation of some
underlying function.

» Specified data points are to be fit
exactly.




Interpolation

« Interpolations are sometimes expected
to give reasonable values between the
data points as well as fitting them
exactly.

» Approximate fits with smooth curves
near the data points are least squares
problems.
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Why interpolation?

—Plotting smooth curve through data.

—Easy evaluation of a more difficult
underlying mathematical function.

—Reading “between the lines” of a data
table.

— Differentiation or integration of tabular
data.

How to express p(x)
« Polynomial expansion. (3 term example)
p(X) =Y, =a+bx +cx’
p(X) =Y, =a+bx +cx’
P(X,) =Y, =a+bx, +cx]

p(X;) =Y, =a+bx, +cx;

Activity 8: (x,y)'s are known
(a,b,c) are not.




Express p(x) more generally
* Linear combination of basis functions:
n
p(x) = Zaj(ﬁj (X)
Recall I=1
p(X) =Y, =a+bx +cx’
P(X) =Y, =4, +ax +ax
P(X%) = Yi = 3,0, (X)) +a,0,(%) + 3,05 (X)

with  @(X) =1, @(x) =x;and ¢(X) = x?
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« If the number of data points and the number
of basis functions are equal, we can solve a
system of linear equations for the {a}:

POX) =Y, =D a;0;(x), fori=1..n
=1

First Equation

al(pl(xl)+az(p2(xl)+"'+an(pn(xl) =Y,
* First element of Matrix — Vector product
wl(xl) ¢2(X1) ¢n(xl) a Y
¢71(X2) ¢’2(X2) (Dn(X2) a, _ Y,

(ol(xn) (pz(xn) (on(xn) a, Yn




First Equation

a1¢’1(X1)+az¢2(x1)+"'+an¢’n(x1) =Y
» Matrix — Vector product
o (%) @, (%) - e, (X)) q Yi

a,

n
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Second Equation

4,0, (X,) +8,0,(%) +-+3,0,(X,) =Y,

* Second element of Matrix — Vector

roduct
(pl(xl) (Dz(xl) (Dn(xl) a Y

2(%) @,(%) - 9 (%) | &, Y

¢1(Xn) ¢2(Xn) wn(xn) a, Yn

Second Equation

al(pl(xz) + az(”z(xz) +eot an(pn(xz) =Y,

» Second element of Matrix — Vector
roduct
cee al

P(X%) @(%) @, (%) | &, 1 Y2

a

n

10



What form for the basis functions?

» Polynomials in x.

* Piecewise polynomials. Sections of data are fit
and then the fits are pieced together

« Trigonometric functions (Fourier): cos(jx), sin(jx),

etc.
« Straight lines between neighbors
« Exponentials
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Polynomials for basis functions

» The fit of an (n-1) degree polynomial to n data
points is unique. The resulting polynomial
does not depend upon the form of the
polynomial basis functions.

» The numeric conditioning of the problem
depends strongly on the choice of
polynomial basis. The problem can be very
poorly conditioned for high dagree
polynomials. {1&’)?%

{5, X—1,2x* + x}

Monomials - Vandermonde

 Basis setis {1, x, X2, x3,..., x"1} for
interpolation of n data points.

» The system of equations is:

Lox x - x|l Y

Lox Xz2 X;_l a, Ys
2 n-1 -

LoXy, X5 o X & |=|Y;
2 n-1

1 X, X, X || @, Yn

11



Monomials - Vandermonde

[ N Y

1

2 -1

X, X x| & Y,
2 -1

Xy Xy x| a, Y,
2 -1 —

X, X X7l ay | =] Y,
2 -1

X, X o XA, Ya

 For this case, the matrix is full and provides
difficult numeric challenges in many cases.

« Approach taken by built-in polyfit.

2/8/2012

Activity 9: Part |

Activity 9: part |

¢ Find the polynomial interpolant using
monomials for the following data set:

i 0 1 2
X, 2 0 1
y; or f(x;) =27 -1 0

12



Activity 9: part |

 Find the polynomial interpolant using
monomials for the following data set:

p(x) = -1 + 5x -4x?
p(-1)=-1-5-4 =-10

i 0 1 2
Xi -2 0 1
y; or f(x;) =27 -1 0
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Monomials - Vandermonde

 Consider the six experimental points

given below:
x 0.0 0.5 [1.0 |6.0 [7.0 |9.0
y (0.0 |1.6 (2.0 |2.0 [1.5 [0.0

Set up and solve using polyfit

Matlab Solution (polydemo.m)

clear all
cloze all
sData get
n=6;

x = [0.0; 0.5; 1.0; 6.0; 7.0; 9.0];
¥ = [0.0; 1.6: 2.0; 2.0; 1.5: 0.0]:
call polyfit to obtain n-l order fit:

a = polyfit(x,g,n-1)';

disp ('coefficients in decreasing order')

a

X5

- |_—eoefficient

a=
0.0057
-0.1348 @

- |_—eoefficient
1.1208

-3.8559
4.8643 X0

-0.0000 /,eoef‘flmenl

13



Evaluation of Interpolant

f(x)=a +ax+ax’ +..+ax""

¢ For each value of x, must evaluate a set of

powers of x. This should be done efficiently.

* One idea: for a particular value of x

accumulate the polynomial from term to term

by multiplication, avoiding the
exponentiations.

« Note: polyfit returned the coefficients in
reverse order: a, is the coefficient of x™1.
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Evaluation of Interpolant

— 2 n-1
f(X)=a +a,x+a,x" +...+a,x

« Note: polyfit returned the coefficients in

reverse order: a, is the coefficient of x™1.
— 2 n-1
f(x)=a,+a, X+a,,X +..+aXx

Polyval is a built-in function that takes the

coefficients in the reverse order provided by

polyfit and a vector x of input values and

returns a vector of y-values obtained from

the polynomial interpolant.

f(x)=a,+a,_,x+a, X" +..+ax""

clear all
close all

Data set

n = 6;

® = [0.0; 0.5; 1.0;

6.0; 7.0; 9.0];
¥ = [0.0; 1.6: 2.0; 2.0; L.5; 0.0]:
4call polyfit to obtain n-1 order fit
& = polyfitix,y,n-1)';
disp ('cosificients in decreasing ordex')
a

% evaluation of interpol
Xlo=min(x)-0.5;

3 = polyval(a,x2);
figure
plot(x,y,* x2,3)

xlabel ("X")
ylabel ('p(x) and y(x)")

title(‘'Interpolant and data points using polyval’)

or plotting

14



n-1

f(x)=a, +a, Xx+a _,X* +..+aX

Interpolant and data points.

2 +. +

B(x) and y(s)
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Horner’s Rule

2 3 4 5
f(X)=a +a,x+a,x" +a,x” +a,x" +ax
f(X)=((((agx+as)x+a,)X+a,)X+a,)X+a,

*The first form requires nine multiplications
and five additions.

*The nested form requires five multiplications
and five additions.

f(X)=((((agx+as)x+a,)X+a,)x+a,)X+a,

4Evaluates the polynomial by Horners

% & 13 wector of independent wvarisbhle

m = lengthiz):

% & 18 wvector of coefficients

n = lengthia):

pval = zeros(m,1):

£Set pval = aln) column vector of z-
pval=ain] * {ones(sizelz)); values (x in the above)

for i=n-1:-1:1
for j=1:m

pvalil) = z(3)*pval (i) + a(i);
end

4
e ‘Column vector of pval

15



f(X)=((((agx+as)X+a,)X+a,)X+a,)x+a,

Ewvaluates the polynomial by Horners
iz wector of independent wvariable
lengthiz) ;
iz wector of coefficients
lengthia) ;
pval = zerosim,1l):;
33ec pwal = aln)
pval=ai(n) * (ones (size{ziji:
for i=n-1:-1;

pval = z.%pwval + =a(i):

end‘\\\\ ///,/"

Column vector of pval ‘

B B oae o
I ra

o

values

column vector of z- ‘

2/8/2012

2 3 4 5
f(x)=a, +a,Xx+a;X" +a,x” +a;X" +a,X
f(X)=((((agx+a5)X+a,)X+a;)X+a,)X+a

with x= 8.88 y is = 0.608
with x= 8.58 y is = 1.688
with x= 1.88 y is = 2.8688
with x= 6.88 y is = 2.888
with x= 7.88 y is = 1.508
with x= 9.88 y is = 0.008
with x= 8.75 y is = 1.911
with x= 4.88 y is = 0.818

3

eInterpolant reproduces original data
exactly.

*Also evaluated at two additional points.

16



Monomial Basis Functions

2/8/2012

Functional
behavior can be
hard to describe

in this region,
since the basis
functions are so
e similar.
() 0.5
FIGURE 7.1
Mosomial basis functions:

Other Polynomial
Interpolants?

* Recall, the requirement  p(x)=y, = a;p;(x),fori=0,..,n
is: =0

*The set of {x;, y;} is given.

The set {g }must be identified

«The set of {q; }are found to define the particular
interpolant

«Consider:

p(x‘):yl:ialll(x‘),fori:(),...,n n
= p(x):Zalll(x),fcrallX
lif j=k =]

L (x)=0; =
1% = 0 {Oifj;tk

What form the A matrix?

(%) o, (%) e (X)) A Y,
?1(%) @,(%) o @(%) | &, Y

@1(Xn) ¢2(Xn) ¢n(xn) a, Yn

if j=k
0 - 0Ya Yi 'I(Xk)=§lk={olifjj==k
0Oo1 --- 0 a, Y,

—
Q..

00 - tha) Ly,

17



p(x)=Y;=a;l(x),fori=0,.,n
=0

Loy —s, | 1ITi=K

PRI 0if j2k

* What form for the {l,(x)}?
e Forthe case,n=4, j=2, try:

(1 )0k k=, Mo, )
X, = Xu)(xz - XIXXZ 7X3)(Xz 7X4)
If X = X3, ly(X3) = 0 Notice the denominator has

only x, factors and the
numerator has none.

Iz(x)= (

If X=Xy, h(x) =1

This definition meets the requirement.

1, (x)= H(X xk

k=j (X

2/8/2012

Example: Find the Lagrange
Interpolating Polynomial for:

i 0 n 5
Xi D) 0 1
yi or f(Xi) =27 -1 0
(x=0(x=D _ (0)(x-1)
| (x)—(_z—o)(_z_])— 5 0 H (x— Xk)
| (x)=(xf(*2))(xfl)=(x+2)(x,l) J k#] )
(0—(=2))(0-1) ) |
I (X):(X*(*Z))(X*O):(X+2)(x) ACtIVIty 9:
o e Part Il

Example: Find the Lagrange
Interpolating Polynomial for:

i 0 1 2
e 2 0 1
y;or f(x;)) |-27 -1 |Recall, the A

] matrix was a unit
100 = (X>(x ) p(X):ZY,l,(X) matrix here.

.,m:w (27)(x(x 1)] (,1)(%(;*1)] (0)[(X+2)x]
(><+2)(><) p(-1)=-9-1+0=-10

P(xX) = —4x* +5x 1 The Same
Polynomial!!

L,(x)=

18



Lagrangian Functions

2/8/2012

j-1

Newton: 2,0 =] T(x=x)
k=1

Each basis function is @, x)=1

of (j-1) power, but it is

not a simple monomial P, (X) = (X - Xl)

erhatponer (0 = (X=X)(X=X,)
P00 = (X=X )(X=X) (X = X,.))

The x; values are the independent data set

variables.
Heath Fig 7.3

The five data points (X;,...,Xs)
are evenly spaced here.

19
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Example

» Find the Newton interpolant for:
i 1 2 3
Xi -2 0 1
y; or f(x;) [-27 -1 0

o () =1 j-1

2,0 =(x—X) ;0 =]Tx=x)
k=1

¢3(X):(X—Xl)(X—X2)

Activity 9: Part lll

Example
¢ Find the Newton interpolant for:
i 1 2 3
X -2 0
y; or f(x;) [-27 -1 0
o () =1 P(X) =27 +13(X=X,) —4(X= X )(X=X,)
—1)= 27 +13(~14+2)—4(~1+2)(-1-0
?,(X) = (X=X EE71;=710+ D=0
P3(X) = (X=XX=2) | ) 27 4130+ 2) = A0+ 2) () = <14 SX— 45

The linear equation matrix is neither full nor
diagonal in the Newton case

» Consider the equation represented by the first
row of the matrix for a system with n = 4:

a1(1)+az(x—x,)+a1(x —xl)(x—x2)+a4(x _X1)(X _Xz)(x _Xz):yy

Plug in x = x, for the 1st set of data points
(X1.y1)

al(1)+a2(xl —X,)+33(X‘ _XI)(XI _X2)+a4 X _X\)(Xl _Xz)(xx _Xx): Y,

a )=y,

20



The linear equation matrix is neither full
nor diagonal

« Consider the equation represented by
the second row of the matrix for a
system with n = 4:

ax(l)+az(xfx|)+az(x 7X1)(X7Xz)+a~¢(x 7X1)(X 7Xz)(x 7X3):YZ
Plug in x = x, for the 2nd set of data points

31%()2]};22)“2 =X )+ az(xz =X )(Xz — X))+ a4(x2 =X )(Xz —X% )(Xz - Xs) =Y,
S e

a (1) + az(xz - X1) =Y, zeros

2/8/2012

The linear equation matrix is neither full nor
diagonal

 Consider the equation represented by
the third row of the matrix for a system
with n = 4:

a1(1)+az(xfxl)+a3(x 7X1)(X7X2)+a4(x 7X1)(X 7X2)(x 7X3)=y}

Plug in x = x; for the third set of data points
(X3,¥3)

3 (D) +a, (X = X)) +a5 (% = X)X = X,) +8,06 = X)X = X) (% = X;) = Y;

a(D+a,(% =X ) +a;(X; = X)(X; —X,) =Y,

Zeros

» The problem is better conditioned because the
magnitudes of individual terms are similar due to
the shifting.

1)+, (K= X)+ (X =X)(X=X)+8,(¢ =X)(X ~X)(X =X)=Y;

*The linear equations matrix is lower triangular rather than full.

1 0 0 0
I X=X 0 0
Lo=%) 06=X)(X%=%) - 0
Lo =%) (=X)00 =%) o (R = X)X = X)X =X )

21



e The problem is better conditioned because the
magnitudes of individual terms are similar due to
the shifting.

3, (D +a,(X=x)+a,(X =X)(X=X,)+a,(X =X)(X =X,)(X =X;) =Y,

*The linear equations matrix is lower triangular rather than full.

¢ The solution of the system takes fewer
operations because the equations are simpler.
(n2 instead of n3)

¢ The interpolant can also be evaluated most
efficiently by a nested algorithm (Horner)

2/8/2012

Newton Method

» Newton coefficients can be solved by
divided differences

e Activity 10

a (D +a,(X=X)+a5(X =X )(X=X)+
F8,(X =X)(X =X)(X =%;)+ -

+a6(X _Xo)(x _Xl)(x _Xz)(x _Xs)(x _X4):y

In this section, the author numbers data points from k=0 to
k=N. Above, N=5.

kK |10 (1 |2 3 |4 |5
x (0.0 [0.5 |1.0 [6.0 |7.0 (9.0

22



2nd divided differences

f[XI’X]]: f[xl]—fl_XJJ f[xi?xjﬂxk]: fl.XJ’XkJ_fl.XI’XJJ

% —X; X =X
k 0o 2 3 4 s
X 00 |05 |10 |60 |70 |90
y 00 |16 |20 |20 |15 |00
xd] 00 |16 |20 |20 |15 |00
TXoXer1] 32 |08 |0 205|075
[XiXer1,Xkr2] |24 |-1454 |-0833 [-0833

Continue through 5 differences (6™
order polynomial

2/8/2012

Theorem #3 on page 86 shows that:

a1(1)+az(xfxo)+a3(x 7X0)(X7X1)+

+a4()( —X”)(X —Xl)(X _Xz)+"'

+8,(X = X)X =x)(X =X )(X =X)(X =X,)=y
*These are the first column entries from

the previous table of divided differences.
*a,=f[xo. %] (In the text, these are in the first row.)

*ag= f[Xg,Xy,X,]

*a,=f[xo]

*The data points could be in any order;
«a, = f[Xg, X, Xa,Xs] often sorted choose X, to be near the x-
“etc. value.

«Data points could have arbitrary spacing
«Divided differences are related to
derivatives.

Skip section 4.3.2

« Specific case of the previous section.

e Activity 11, Part |

23



Placement of data points.

« Evenly spaced data points can be used
to speed up fitting and evaluation. See
discussion of finite difference method in
text for evenly spaced points.

« Unevenly spaced points can sometimes
improve description.

2/8/2012

Plot Interpolant f(x) vs x.

What do
you think
s about the
value of
— 1(4.0)?

“Built in” Matlab Functions

s e Try
polyfit/polyval
with n reduced by
2 1.

. * n = length(x)-1
call polyfit(x,y,n-1)

Which do you like
2 o better?

24



» Simple monomials xi1 can be improved
as a basis by shifting and scaling

2/8/2012

Example

¢ Census data for nine |Data=
years. 1900 76212168
* To be fit with 8th 1910 92228496
order polynomial with 1920 106021537

shifting and scaling. 1930 123202624
1940 132164569

1950 151325798
1960 179323175
1970 203302031
1980 226542199

Shifting and Scaling

- Four polynomials ) Fortt
q)j(t) =tit Cond1 = Inf

2) For (t-1900)"j
¢i(t) = (t-1900) Cond2 = 5.9730e+015

3) For (t-1940)7j
Cond3 = 9.3155e+012
@j(t) = [(t-1940)/40] - '4) for ((t-1940)/40

Cond4 = 1.6054e+003

() = (t-1940) 1

25



x 10°
24

22

2

18

16

14

12

1

0.8,

0.6
1900 1910 1920 1930 1940 1950 1960 1970 1980

*What about interpolation between values?

*What about extrapolation beyond end points?
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Other Polynomials

» Lagrange: Each basis function is of (j-
1) order.

« Orthogonal Polynomials: the basis
functions are orthogonal to each other
in some sense. Legendre:
3t -1 53t 35t*-30t7+3

13 t) b b
2 2 8

b

Piecewise Interpolations

CSS455
Winter 2011

26



Piecewise Polynomials

Linear fit. Straight lines connect adjacent

data points.

Each segment has two coefficients (slope and
intercept). They are used to make the

adjacent functions continuous at their
endpoints.

The derivatives are not continuous, resulting

in “kinks” at each data point.

Interpolation is easy. For a point z between the

points (X;,y;) and (Xi,1,Yir1): . y(Xi)+[y(x;])7:()(')}(2%)

el N
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Example of Linear

[nternolation

Increase from n=10 to n=20
points

This is much
better, but the
points need to
be concentrated
on the left hand
side of the
graph for
********* | maximum

“o 05 1 15 2 25 3 efﬁCienCy-
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N=20. but tDemo Program for Chapter 3 overview
! B
s5er up a data ser for piecewise interpd
unevenly :
distributed slose all

clear all
cle
100 n = 20;
w=200;
%({1:10) =linspace (O, .5, 10) ;
80 \ % (11:15)=linspace (0.55,1,5);

x (1ef:20) = linspace(1.2,3,5);
5Use the humps function todefine ¥
¥ = humps (x)
4set up fine grid for evaluation:
z = linspace(0,3,m);
fz = interpl(x,v,z):
/ \ yz = humps(z);
2 A plot(z, £z, -r', 2, vz, '~k %7, 'g7')

Linear Interpolations

» Easy.

« First derivative is discontinuous at each
data point, where the curve has kinks.
Second derivative may be infinite at
those points.

Accuracy may not be sufficient unless

we use large numbers of well placed
data points.

Piecewise Polynomials

« Each segment is fit with cubic polynomial
(four constants to choose, 4n in all).

pk(x):ak+bk(X*Xk)+Ck(X*Xk)2+dk(X*Xk)3

Activity 11, Part II.
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Cubic Hermite “pchip”

» The interpolating function and its first
derivative are continuous. (3 constants)

» The second derivative is piecewise
linear and is probably not continuous;
there may be jumps at nodes.

» Can be chosen to preserve both the
shape of the data and monotonicity.
(provided by choice of slopes.

n constants)

2/8/2012

Cubic Hermite “pchip”

* On intervals where the data is monotonic,
so is the interpolant.

* At points where the data has a local
extremum, so does interpolant.

Piecewise Polynomials

» Cubic Spline. Each data interval [X,, X,.4] is fit
with a cubic polynomial (4 coefficients).

* In addition to fitting the data, it is required that
the function be twice continuously differentiable.
First and second derivatives of f (x) must be
equal at the data points (x;).

» For interior segments, this fixes all four
parameters.

« Each end segment has one free parameter.
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cubic spline for X, < X < Xy,

S (¥) =8 +b (X=X) +6, (X=%)* +d, (x= %)’
s, = f(x)ands,,, = f(x,,) fork=0,1,..,n-1

Sk (%) = Sk (X ) and 8¢ (X ) = S (X))
fork=0,1,..,n-2

*4n unknown coefficients
*4n-2 conditions imposed
«2 conditions imposed for specific properties of fit

«Text approach: eliminate a’s, b's, and d's and then solve for
the c's
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S (X) =2 +bk(x_xk)+ck(x_xk)2 +dk(x_xk)3
sc(x) = f(x)anda, = f(x) By =X — X

S (%) =S (%) = (f., — f)+b (h) +c, (h)* +d, (h)’

rearrrange to give:
by +¢, (h) +dk(hk)2:(fk‘fk+%k= f[%,, 1= 6,

«Substitute this value for b, into the two equations from the
derivatives, we can solve for d's and b’s in terms of the c's.
+Only the c's remain to be defined by solving a system of linear
equations for them.

hC +2(h, +hy, )C + NeiCin =3(0 =)

fk 1 fk
he =X =X and 5, = f[Xk’kal]:Jri
hy
*When written as a matrix G 6,=6,
equation the matrix H will be c, 5, -0,
tridiagonal. Hc= o =3 .
Co 5n4 - 5"72
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Cubic Spline Polynomials

» Remaining parameters used for various
other constraints: slopes at ends of
intervals, periodic conditions, etc.

* Not-a-Knot: set end segment splines to
be same as adjacent ones. (default Matlab
mode with spline or interpl)

» Complete: specify the derivative at end
points.(can be done with spline function)

* Natural: set second derivatives at end
point equal to zero.(can be done with
spline fn)
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Matlab “spline”
option

close all

lear all
ele

= 10:
me200;
% = linspace(9,3.8]:

Matlab “cubic or pchip” option

(red)

100

80

60

40

The spline fit (blue) has a
(false) minima

The pchip (r
& minima whe
\ not.

ed) has no
e data do

1 15 2 25

3
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Spline with different end conditions

Windaw  Holp

2/8/2012

Black: humps curve
Red: “Not a knot” spline fit

both set to zero.

Blue: “Complete” spline, with endpoint slopes

Spline with 20 unevenly spaced

Eoints

Hndow_Lolp *Ten points between 0 and 0.5

Five points between 0.5 and 1

A Five points between 1 and 3

«“Not a knot” and “Complete” splines are

o | nearly indistinguishable.

= *Both are very close to humps curve.
- ]

|1
wt |

4
B 3 P

f SN
\\
a e
ar ] At} 2 s

How to use PP form

Y%set up fine grid for evaluation:
z = linspace(0,3,m);
yz = humps(z);

% fz3 = interp1(x,y,z,'spline’); %not-a-knot cubic spline
PP3 = interp1(x,y, 'spline’,'pp’); %not-a-knot cubic spline
fz3 = ppval (PP3,2);

% fz1 = spline(x,[ 300 y 0],z); %complete spline
PP1 = spline(x,[ 300 y 0]); %complete spline
fz1 = ppval(PP1,2);
plot(z,yz,-k',z,fz1,"-b'x,y,'g*)

PP forms can be conveniently
9% 22 = spline(x,[ 0y 0],2); %natural spline  Saved.
PP2 = spline(x,[ 0 y 0]); %natural spline
fz2 = ppval(PP2,2);
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How about polynomial fit?
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200 Black: humps curve.

Blue: n-1 degree polynomial

150 red: n-2 polynomial

100

s
0 \?«é@

[ 0.5 1 15 2 25 3

Example -
» Census data for nine |Data=
years. 1900 76212168
* To be fit with 8th 1910 92228496
order polynomial with 1920 106021537
shifting and scaling. 1930 123202624
« To be fit with cubic 1940 132164569
spline. 1950 151325798

1960 179323175
1970 203302031
1980 226542199

Try cubic spline

* A cubic spline interpolation was performed on
the same data set. Interpl takes the coarse
initial data set, does the spline fit, and returns
a set of function evaluations for the fine grid

needed for the plot.
%Try a cubic spline fit of same data

Ysp = interpl(Year,Pop,T, spline”);
plot(Year,Pop, "*r",T,Ysp,"b")
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x 10
2.4

22

0.8,

0'16900 1910 1920 1930 1940 1950 1960 1970 1980
*What about interpolation between data?

*What about beyond the endpoints?
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Extrapolation is always
dangerous
 Evaluation of the polynomial fit and the spline

fit for t = 1990 and comparison with actual
1990 census figure.

Actual 1990 population was 248,709,873

Predicted 1990 population by polynomial fit was
82,749,141

Predicted 1990 population by cubic spline fit was
256,915,297

*What happened with polynomial fit?
*Extend the plot beyond the initial data set.

x10°
24

2.2

0.8,

0.6
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
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Polnomial: Test Data
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Polynomial, with reduced order

spline fit
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cubic pchip fit

Cubic Hermite vs Cubic Spline

« Cubic Hermite only requires continuous
function and first derivative.

« If we require derivative to be continuous,
we have n free parameters to set.

« This allows adaptation to pleasing shapes,
monotonicity, etc.

interp1 with ‘pchip’

,,  hot monotonic

W\ interpl with ‘spline’ or direct
\ use of ‘spline’ function.
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Parameterized fit

See ParamSplineDemo.m in set5

Xdata, ydata => each as function of t,
with t = 1: ndatapts.

Define a fine set of parameter t over the same
domain: tfine = linspace(1,ndatapts,120)

X(t) = spline (t,xdata,tfine)

Y(t) = spline (t,ydata,tfine)

Plot (X,Y)
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