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Chapter 3
function evaluations

CSS 455 Winter 12

Two Important Series
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for all |x| < 1.
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goes like xN: 

If x is doubled for an 8-term approximation, 
the error bound goes up by 28 ( x 256)
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For ex with x=4:
N 8 9 10

EN 3.2508 1.3003 0.4816

f(4) 54 598 54 598 54 598f(4) 54.598 54.598 54.598

EN/f(4) 0.0595 0.0238 0.0088

Rel Error % 5.95% 2.38% 0.88%

Activity 7

From Activity 8 (N=8):
x 4 2 1
8-term f(x) 51.8063 7.38095 2.71825
Exp(x) 54.59815 7.389056 2.718282

Rel Error % 5.11% 0.11% 0.0012%
Derived f(4) 54.47846 54.5959117

Rel Error % 0.22% 0.0041%

From Activity 8 (N=8):
For x=4, the error using( 8-term f(2))^2 is 0.22%
For x =4, the error using 11-term f(4) is 0.28%

Beyond the 8-term evaluation, how many 
operations are involved in obtaining f(4) = f(2)2 ?operations are involved in obtaining  f(4) = f(2)2 ?

Beyond the 8-term evaluation, how many 
operations are involved in obtaining 
the 11-term f(4)?

Is there such a thing as a “free lunch”?
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Evaluate ln2
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k The truncation error in this 
alternating series is less than the 
first omitted term.  It will take 109

terms to get the value correct to 9 
decimal places

Why?  X is large!

Evaluate ln2
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here?
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•What would be the truncation error here after N 
terms (k=N-1)?
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Evaluate ln2
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Consider this series and get an upper bound on it.  
That will yield an upper bound on EN.

Evaluate ln2
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Geometric Series: Eq 3.1, with x=(1/3)2.

With that bound for the series:
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With N=9,  EN ≤ 1.02x10-10

Converges rapidly because x is now 
small and powers of it diminish rapidly.
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Series for π

In Example 2, the equation arctan(1) = π/4  was used 
along with a series expansion for arctan(x):
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753 xxxxx ++
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)arctan( xx

With x = 1, the series converges slowly  (1016

terms) to yield π to double precision:
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How do we know the # of terms?

"+−+−==
7
1

5
1

3
11)1arctan(

4
π

In an alternating series, with each term smaller than 
the preceding one, the magnitude of the truncation 
error is bounded by the first term omitted.

So to get an error less than 10-3, you include the first 
thousand terms.

To get double precision result (rel error 10-16), you 
need approximately 1016 terms!!

Series for π
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With x = 1/√3 the series converges more g
rapidly.

In Example 5, it is recast as:

6
π
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Now the series has odd powers of {1/√3} and 
converges rapidly (15 terms for single precision)
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Series Solutions

• Can be very slowly convergent 
• Try to recast series so that it is going as a 

power series in a number less than 1.  
Then the terms will get small more rapidlyThen the terms will get small more rapidly.

• Sometimes called “range reduction”

Recall Square Root 
• A form of fixed point iteration.
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Nx The last iterant in the blue box is 
used after the procedure is scaled to 
require the square root of a number 
between 0.25 and 1.

see demosqrt.m

Square root Iteration

Any number A can be written in the form

1andintegeris
 where,4

1 ≤≤
×=

mn
mA n

1 andinteger  is 4 ≤≤ mn

Then the square root is given by: nmA 2×=

The general square root problem reduces to finding the square 
root of a number between 1/4 and 1.
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Do not study further in book

• Cordic is general for many mathematical 
operations (multiply and divide) and many 
functional evaluations.

• Always involves only shifts and addsy y
• Can predict the number of terms needed
• Can be efficient in software, but is very 

well suited to hardware implementations.
• Read the rest of the chapter for examples 

only.

Polynomial Interpolation

Chapter 4 of Turner
CSS455 Winter 2012

Interpolation

• Given a data set (xi,yi),  i = 1,...,n
seek a function p(x), such that
p(xi) = yi,  i = 1,..., n.
( ) ld b t b l d t d t• (xi,yi) could be tabular data or data 
obtained by evaluation of some 
underlying function.

• Specified data points are to be fit 
exactly.
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Interpolation

• Interpolations are sometimes expected 
to give reasonable values between the 
data points as well as fitting them 
exactlyexactly.

• Approximate fits with smooth curves 
near the data points are least squares 
problems.

Why interpolation?
– Plotting smooth curve through data.
– Easy evaluation of a more difficult 

underlying mathematical function.
– Reading “between the lines” of a data 

table.
– Differentiation or integration of tabular 

data.

How to express p(x)
• Polynomial expansion. (3 term example)

2)( iiii cxbxayxp ++==
2
1111)( cxbxayxp ++==

2
2222 )( cxbxayxp ++==

2
3333 )( cxbxayxp ++==

Activity 8: (x,y)’s are known 
(a,b,c) are not.
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Express p(x) more generally
• Linear combination of basis functions:
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with    ϕ1(x) = 1;   ϕ2(x) = x ; and   ϕ3(x) = x2

• If the number of data points and the number 
of basis functions are equal, we can solve a 
system of linear equations for the {aj}:
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11122111 )()()( yxaxaxa nn =+++ ϕϕϕ "

First Equation

• Matrix – Vector product 
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Second Equation

• Second element of Matrix – Vector 
productproduct 
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Second Equation

• Second element of Matrix – Vector 
productproduct 
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What form for the basis functions?

• Polynomials in x.
• Piecewise polynomials.  Sections of data are fit 

and then the fits are pieced together
• Trigonometric functions (Fourier): cos(jx), sin(jx),Trigonometric functions (Fourier): cos(jx), sin(jx), 

etc.
• Straight lines between neighbors 
• Exponentials 

,,
2 xjxj ee ±±

Polynomials for basis functions

• The fit of an (n-1) degree polynomial to n data 
points is unique.  The resulting polynomial 
does not depend upon the form of the 

l i l b i f tipolynomial basis functions.
• The numeric conditioning of the problem 

depends strongly on the choice of 
polynomial basis. The problem can be very 
poorly conditioned for high degree 
polynomials. { }
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Monomials - Vandermonde

• Basis set is {1, x, x2, x3,…, xn-1} for 
interpolation of n data points.

• The system of equations is:The system of equations is:
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Monomials - Vandermonde
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• For this case, the matrix is full and provides 
difficult numeric challenges in many cases.

• Approach taken by built-in polyfit.
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Activity 9: Part I

Activity 9: part I 

• Find the polynomial interpolant using 
monomials for the following data set:

i 0 1 2

xi -2 0 1

yi or f(xi) -27 -1 0
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Activity 9: part I 

• Find the polynomial interpolant using 
monomials for the following data set:

p(x) = -1 + 5x -4x2

i 0 1 2

xi -2 0 1

yi or f(xi) -27 -1 0

p(-1) = -1 -5 -4  = -10

Monomials - Vandermonde

• Consider the six experimental points 
given below:

x 0 0 0 5 1 0 6 0 7 0 9 0x 0.0 0.5 1.0 6.0 7.0 9.0 

y 0.0 1.6 2.0 2.0 1.5 0.0 
 

 

Set up and solve using polyfit

Matlab Solution (polydemo.m)

a =

0.0057

-0.1348

x5

coefficient

x3

1.1208

-3.8559

4.8643

-0.0000

x
coefficient

x0

coefficient
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Evaluation of Interpolant

• For each value of x, must evaluate a set of 
powers of x This should be done efficiently

12
321 ...)( −++++= n

n xaxaxaaxf

powers of x.  This should be done efficiently.
• One idea: for a particular value of x

accumulate the polynomial from term to term 
by multiplication, avoiding the 
exponentiations. 

• Note: polyfit returned the coefficients in 
reverse order: a1 is the coefficient of xn-1.

Evaluation of Interpolant

• Note: polyfit returned the coefficients in 
reverse order: a1 is the coefficient of xn-1.

12
321 ...)( −++++= n

n xaxaxaaxf

Polyval is a built-in function that takes the 
coefficients in the reverse order provided by 
polyfit and a vector x of input values and 
returns a vector of y-values obtained from 
the polynomial interpolant.

1
1

2
21 ...)( −

−− ++++= n
nnn xaxaxaaxf

1
1

2
21 ...)( −

−− ++++= n
nnn xaxaxaaxf

% evaluation of interpolant for plotting
xlo=min(x)-0.5;
xhi=max(x)+0.5;
x2 = linspace(xlo,xhi,120)';
f3 = polyval(a,x2);
figure
plot(x,y,'*',x2,f3)
title('Interpolant and data points using polyval')
xlabel ('X')
ylabel ('p(x) and y(x)')
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1
1

2
21 ...)( −
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123456

5
6

4
5

3
4

2
321

))))(((()(
)(

axaxaxaxaxaxf
xaxaxaxaxaaxf
+++++=

+++++=

Horner’s Rule

•The first form requires nine multiplications 
and five additions.

•The nested form requires five multiplications 
and five additions.

Invert the loops

123456 ))))(((()( axaxaxaxaxaxf +++++=

column vector of z-
values (x in the above)

Column vector of pval
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column vector of z-

123456 ))))(((()( axaxaxaxaxaxf +++++=

column vector of z
values

Column vector of pval

Pointwise multiply

123456

5
6

4
5

3
4

2
321

))))(((()(
)(

axaxaxaxaxaxf
xaxaxaxaxaaxf
+++++=

+++++=

x 0.0 0.5 1.0 6.0 7.0 9.0 

y 0.0 1.6 2.0 2.0 1.5 0.0 
 

 

•Interpolant reproduces original data 
exactly.

•Also evaluated at two additional points.
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Monomial Basis Functions

Functional 
behavior can be 
hard to describe 
in this region, 
since the basis 
functions are so 
similar.

Other Polynomial 
Interpolants?

• Recall, the requirement 
is:
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•The set of {xi, yi} is given.

•The set  {ϕj }must be identified

•The set of {aj }are found to define the particular 
interpolant

•Consider:
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• What form for the {lj(xi)}?
• For the case, n = 4,  j = 2, try:
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xl
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If x = x2, l2(x) = 1

If x = x3, l2(x3) = 0

This definition meets the requirement.
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Notice the denominator has 
only x2 factors and the 
numerator has none.

Example: Find the Lagrange 
Interpolating Polynomial for:

i 0 1 2
xi -2 0 1
yi or f(xi) -27 -1 0yi f( i)
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Activity 9: 
Part II

Example: Find the Lagrange 
Interpolating Polynomial for:

i 0 1 2
xi -2 0 1
yi or f(xi) -27 -1 0Recall, the Ayi or f(xi) 27 1 0
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Recall, the A 
matrix was a unit 
matrix here.

The Same 
Polynomial!!
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Lagrangian Functions

Newton: 
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Each basis function is 
of (j-1) power, but it is 
not a simple monomial 
of that power.

The xi values are the independent data set 
variables.

Heath Fig 7.3

The five data points (x1,…,x5) 
are evenly spaced here.



2/8/2012

20

Example
• Find the Newton interpolant for:

i 1 2 3

2 0 1xi -2 0 1
yi or f(xi) -27 -1 0
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Activity 9: Part III

Example
• Find the Newton interpolant for:

i 1 2 3

xi -2 0 1

2

211
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p
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The linear equation matrix is neither full nor 
diagonal in the Newton case

• Consider the equation represented by the first 
row of the matrix for a system with n = 4:

13214213121 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

Plug in x = x1 for the 1st set of data points 
(x1,y1)

13121114211131121 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

11 )1( ya = Zeros
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The linear equation matrix is neither full 
nor diagonal

• Consider the equation represented by 
the second row of the matrix for a 
system with n = 4:

23214213121 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

Plug in x = x2 for the 2nd set of data points 
(x2,y2)

23222124221231221 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

21221 )()1( yxxaa =−+ Zeros

The linear equation matrix is neither full nor 
diagonal

• Consider the equation represented by 
the third row of the matrix for a system 
with n = 4:

33214213121 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

Plug in x = x3 for the third set of data points 
(x3,y3)

33323134231331321 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

3231331321 ))(()()1( yxxxxaxxaa =−−+−+
Zeros

• The problem is better conditioned because the 
magnitudes of individual terms are similar due to 
the shifting.

33214213121 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

•The linear equations matrix is lower triangular rather than full.
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• The problem is better conditioned because the 
magnitudes of individual terms are similar due to 
the shifting.

33214213121 ))()(())(()()1( yxxxxxxaxxxxaxxaa =−−−+−−+−+

•The linear equations matrix is lower triangular rather than full.

• The solution of the system takes fewer• The solution of the system takes fewer 
operations because the equations are simpler. 
(n2 instead of n3)

• The interpolant can also be evaluated most 
efficiently by a nested algorithm (Horner)

Newton Method

• Newton coefficients can be solved by 
divided differences

• Activity 10

yxxxxxxxxxxa

xxxxxxa

xxxxaxxaa

=−−−−−+

+−−−+

+−−+−+

))()()()((

))()((

))(()()1(

432106

2104

103021

"

In this section, the author numbers data points from k=0 to 
k=N.  Above, N=5.

k 0 1 2 3 4 5 

x 0.0 0.5 1.0 6.0 7.0 9.0 

y 0.0 1.6 2.0 2.0 1.5 0.0 
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k 0 1 2 3 4 5 

x 0.0 0.5 1.0 6.0 7.0 9.0 

2nd divided differences
[ ] [ ] [ ]

ik

jikj
kji xx

xxfxxf
xxxf

−

−
=

,,
,,[ ] [ ] [ ]

ji

ji
ji xx

xfxf
xxf

−

−
=,

y 0.0 1.6 2.0 2.0 1.5 0.0 

f[xk] 0.0 1.6 2.0 2.0 1.5 0.0 

f[xk,xk+1] 3.2 0.8 0 -0.5 -0.75  

f[xk,xk+1,xk+2] -2.4 -.1454 -.0833 -.0833   
 

 

Continue through 5th differences (6th

order polynomial

yxxxxxxxxxxa

xxxxxxa

xxxxaxxaa

=−−−−−+

+−−−+

+−−+−+

))()()()((

))()((

))(()()1(

432106

2104

103021

"

Theorem #3 on page 86 shows that:

a f[x ] •These are the first column entries from •a1=f[x0]

•a2=f[x0,x1]

•a3= f[x0,x1,x2]

•a4 = f[x0,x1,x2,x3]

•etc.

the previous table of divided differences.
(In the text, these are in the first row.)

•The data points could be in any order; 
often sorted choose x0 to be near the x-
value.

•Data points could have arbitrary spacing

•Divided differences are related to 
derivatives.

Skip section 4.3.2

• Specific case of the previous section.

• Activity 11, Part I
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Placement of data points.

• Evenly spaced data points can be used 
to speed up fitting and evaluation. See 
discussion of finite difference method in 
text for evenly spaced points.

• Unevenly spaced points can sometimes 
improve description.  

Plot Interpolant f(x) vs x.

3

4

5

What do 
you think 
about the 

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2 value of 
f(4.0)?

*

“Built in” Matlab Functions

2

3

4 • Try 
polyfit/polyval
with n reduced by 
1

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

Which do you like 
better?

1.
• n = length(x)-1

call polyfit(x,y,n-1)
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• Simple monomials x j-1 can be improved 
as a basis by shifting and scaling

1−

⎟
⎠
⎞

⎜
⎝
⎛ − j

d
cx
⎠⎝ d

Example 

• Census data for nine 
years.

• To be fit with 8th 
order polynomial with 

Data =
1900    76212168
1910    92228496
1920   106021537p y

shifting and scaling. 1930   123202624
1940   132164569
1950   151325798
1960   179323175
1970   203302031
1980   226542199

Shifting and Scaling
• Four polynomials
ϕ j(t) = t j-1

ϕ j(t) = (t-1900) j-1

1)  For t^j
Cond1 = Inf
2)  For (t-1900)^j
Cond2 =  5.9730e+015j

ϕ j(t) = (t-1940) j-1

ϕ j(t) = [(t-1940)/40] j-1

3)  For (t-1940)^j
Cond3 =  9.3155e+012
4)  for ((t-1940)/40
Cond4 =  1.6054e+003
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1.2

1.4

1.6

1.8

2

2.2

2.4
x 108

1900 1910 1920 1930 1940 1950 1960 1970 1980
0.6

0.8

1

•What about interpolation between values?

•What about extrapolation beyond end points?

Other Polynomials
• Lagrange:  Each basis function is of (j-

1) order.
• Orthogonal Polynomials:  the basis 

functions are orthogonal to each otherfunctions are orthogonal to each other 
in some sense.    Legendre:

,
8

33035,
2

35,
2

13,,1
2432 +−−− tttttt

Piecewise Interpolations

CSS455
Winter 2011
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Piecewise Polynomials
• Linear fit.  Straight lines connect adjacent 

data points.
• Each segment has two coefficients (slope and 

intercept).  They are used to make the 
adjacent functions continuous at theiradjacent functions continuous at their 
endpoints.

• The derivatives are not continuous, resulting 
in “kinks” at each data point.

• Interpolation is easy.  For a point z between the 
points (xi,yi) and (xi+1,yi+1):

( )i
ii

ii
i xz

xx
xyxyxyzy −⎥

⎦

⎤
⎢
⎣

⎡
−
−

+≈
+

+

1

1 )()()()(

Example of Linear 
Interpolation

60

80

100

0 0.5 1 1.5 2 2.5 3
-20

0

20

40

Increase from n=10 to n=20 
points

60

80

100

This is much 
better, but the 
points need to 
b t t d

0 0.5 1 1.5 2 2.5 3
-20

0

20

40

be concentrated 
on the left hand 
side of the 
graph for 
maximum 
efficiency.
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N=20, but 
unevenly 

distributed

60

80

100

0 0.5 1 1.5 2 2.5 3
-20

0

20

40

60

Linear Interpolations

• Easy.
• First derivative is discontinuous at each 

data point where the curve has kinksdata point, where the curve has kinks.
• Second derivative may be infinite at 

those points.
• Accuracy may not be sufficient unless 

we use large numbers of well placed 
data points.

Piecewise Polynomials

• Each segment is fit with cubic polynomial 
(four constants to choose, 4n in all).

32 )()()()( kkkkkkkk xxdxxcxxbaxp −+−+−+=

Activity 11, Part II.
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Cubic Hermite “pchip”
• The interpolating function and its first 

derivative are continuous.  (3 constants)
• The second derivative  is piecewise 

linear and is probably not continuous; p y ;
there may be jumps at nodes.

• Can be chosen to preserve both the 
shape of the data and monotonicity. 
(provided by choice of slopes. 
n constants)

Cubic Hermite “pchip”

• On intervals where the data is monotonic, 
so is the interpolant.

• At points where the data has a localAt points where the data has a local 
extremum, so does interpolant.  

Piecewise Polynomials
• Cubic Spline. Each data interval [xk, xk+1] is fit 

with a cubic polynomial (4 coefficients).
• In addition to fitting the data, it is required that 

the function be twice continuously differentiable.  
First and second derivatives of f (x) must beFirst and second derivatives of f (x) must be 
equal at the data points (xi).

• For interior segments, this fixes all four 
parameters.

• Each end segment has one free parameter.
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cubic spline for xk ≤ x ≤ xk+1

32 )()()()( kkkkkkkk xxdxxcxxbaxs −+−+−+=

1-n0,1,..., k for   )( and )( 11 === ++ kkkk xfsxfs

′′′′′′

2n0,1,...,k for 
)()( and )()( 111111

−=

′′=′′′=′ ++++++ kkkkkkkk xsxsxsxs

•4n unknown coefficients

•4n-2 conditions imposed

•2 conditions imposed for specific properties of fit

•Text approach: eliminate a’s, b’s, and d’s and then solve for 
the c’s

32 )()()()( kkkkkkkk xxdxxcxxbaxs −+−+−+=

)( and )()( k kkkk xfaxfxs ==

ff
givetorearrrange

− )(
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2
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32
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ffhdhcb δ≡=−=++ +
+ ],[)()()( 1

12

•Substitute this value for bk into the two equations from the 
derivatives, we can solve for  d’s and b’s in terms of the c’s.

•Only the c’s remain to be defined by solving a system of linear 
equations for them.

•When written as a matrix 
equation the matrix H will be 
tridiagonal.
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Cubic  Spline  Polynomials
• Remaining parameters used for various 

other constraints: slopes at ends of 
intervals, periodic conditions, etc.

• Not-a-Knot:  set end segment splines to 
be same as adjacent ones. (default Matlabj (
mode with spline or interp1)

• Complete: specify the derivative at end 
points.(can be done with spline function)

• Natural:  set second derivatives at end 
point equal to zero.(can be done with 
spline fn)

Matlab “spline” 
option

60

80

100

0 0.5 1 1.5 2 2.5 3
-20

0

20

40

60

Matlab “cubic or pchip” option 
(red)

60

80

100

The spline fit (blue) has a 
(false) minima

0 0.5 1 1.5 2 2.5 3
-20

0

20

40

(false) minima

The pchip (red) has no 
minima where data do 
not.
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Spline with different end conditions

Black: humps curve
Red:  “Not a knot” spline fit
Blue:  “Complete” spline, with endpoint slopes 
both set to zero.
Green:  Ten evenly spaced data points

Spline with 20 unevenly spaced 
points

•Ten points between 0 and 0.5
Five points between 0.5 and 1
Five points between 1 and 3
•“Not a knot” and “Complete” splines are 
nearly indistinguishable.
•Both are very close to humps curve.

How to use PP form
%set up fine grid for evaluation:
z = linspace(0,3,m);
yz = humps(z);

% fz3 = interp1(x,y,z,'spline'); %not-a-knot cubic spline
PP3 = interp1(x,y,'spline','pp'); %not-a-knot cubic spline
fz3 = ppval (PP3,z);

% fz1 = spline(x,[ 300 y 0],z); %complete splinep ( ,[ y ], ); p p
PP1 = spline(x,[ 300 y 0]); %complete spline
fz1 = ppval(PP1,z);
plot(z,yz,'-k',z,fz1,'-b',x,y,'g*')

% fz2 = spline(x,[ 0 y 0],z); %natural spline
PP2 = spline(x,[ 0 y 0]); %natural spline
fz2 = ppval(PP2,z);

PP forms can be conveniently 
saved.
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How about polynomial fit?

100

150

200 Black:  humps curve.

Blue: n-1 degree polynomial

red: n-2 polynomial

0 0.5 1 1.5 2 2.5 3
-50

0

50

Example -

• Census data for nine 
years.

• To be fit with 8th 
order polynomial with 

Data =
1900    76212168
1910    92228496
1920   106021537p y

shifting and scaling.
• To be fit with cubic 

spline.

1930   123202624
1940   132164569
1950   151325798
1960   179323175
1970   203302031
1980   226542199

Try cubic spline

• A cubic spline interpolation was performed on 
the same data set.  Interp1 takes the coarse 
initial data set, does the spline fit, and returns 

t f f ti l ti f th fi ida set of function evaluations for the fine grid 
needed for the plot.

%Try a cubic spline fit of same data
Ysp = interp1(Year,Pop,T,'spline');
plot(Year,Pop,'*r',T,Ysp,'b')
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1 2

1.4

1.6
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2

2.2

2.4
x 108

1900 1910 1920 1930 1940 1950 1960 1970 1980
0.6

0.8

1

1.2

•What about interpolation between data?

•What about beyond the endpoints?

Extrapolation is always
dangerous

• Evaluation of the polynomial fit and the spline 
fit for t = 1990 and comparison with actual 
1990 census figure.

Actual 1990 population was    248,709,873 
Predicted 1990 population by polynomial fit was     

82,749,141 
Predicted 1990 population by cubic spline fit was    

256,915,297

1.8

2

2.2

2.4
x 108

•What happened with polynomial fit?

•Extend the plot beyond the initial data set.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
0.6

0.8

1

1.2

1.4

1.6



2/8/2012

35

Polnomial: Test Data

3

4

5

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2

2

3

4

Polynomial, with reduced order

0 1 2 3 4 5 6 7 8 9 10
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0

1

spline fit

1.5
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0 1 2 3 4 5 6 7 8 9 10
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0
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1
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cubic pchip fit

1 5

2

2.5

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

Cubic Hermite vs Cubic Spline 

• Cubic Hermite only requires continuous 
function and first derivative.

• If we require derivative to be continuous, 
we have n free parameters to setwe have n free parameters to set.

• This allows adaptation to pleasing shapes, 
monotonicity, etc. 

interp1 with ‘pchip’

interp1 with ‘spline’ or direct 
use of ‘spline’ function.

not monotonic

extrema
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Parameterized fit

• See ParamSplineDemo.m in set5 
• Xdata, ydata => each as function of t, 

with t = 1: ndatapts.
• Define a fine set of parameter t over the sameDefine a fine set of parameter t over the same 

domain: tfine = linspace(1,ndatapts,120)
• X(t) = spline (t,xdata,tfine)
• Y(t) = spline (t,ydata,tfine)
• Plot (X,Y)


