Systems of Linear Eqns

CSS455 — Winter 2012
Ch7 of Turner

Systems of Linear Eqns are
Common in Scientific Applications
 System of 2 eqns and 2 unknowns is given

by:

apX; +apX, = by

The a’s and b’s are known,
perhaps from a measurement
or from theory.

8y1Xy + 8%, = D,

«Can be generalized to m equations, n unknowns.
«Can be represented by matrix eqn: Ax = b, where

A:[an aiz], X:[Xl} ad b :(bl]
aZl a22 XZ b2

Consider a 2x2 example:
2%, +3x, =8 (eqnl)

Example
5x, +4x, =13 (egn 2)} xamp

Activity 5, Part I: With your partner, solve this system and
keep track of how you do it.




Consider a 2x2 example:

2%, +3x, =8 (eqnl) Example
5x, +4x, =13 (eqn 2)

m First Approach: step-wise solution and substitution: m

Solve Eqn 1 for X,: X,= (8-2x,)/3
Substitute x, into Eqn 2: 5x, + 4{(8-2x,)/3} = 13
Solve for x,:

5x, + (32/3) — (8/3)x,= 13
X, =1

Consider a 2x2 example:
2%, +3x, =8 (eqnl)

Example
5x, +4x, =13 (eqn 2)

mFirst Approach: step-wise solution and substitution:

|

Substitute x, into

1t becomes much more complex as the
Solve for x,: number of unknowns increases. It is still
3%,=6 deterministic. The algebra becomes
somewhat complex.

X;=2 Substitute x, into Eqn 1
Solve for x,

Consider a 2x2 example:
2%, +3x, =8 (eqnl)

Example
5x, +4x, =13 (egn 2)} xamp

Second approach: manipulate entire equations: adding,
subtracting, scaling in order to eliminate variables from the

equations.

@EqNZ- (@) Eqn L.
15x,-8X, +12x, —12x,= 3(13) — (4)(8)=7
(Mx=7
Multiply by (1/7): x,=1
Overall transformation: (3/7)Eqn2 — (4/7)Eqgnl




Consider a 2x2 example:

2%, +3x, =8 (eqnl) Example
5x, +4x, =13 (eqn 2)

To eliminate x,, subtract 2 times Eqn2 from 5
times Eqgn 1:
(5)Eqn 1 - (2) Egn 2:
10x,-10x, +15x, -8x, = 5(8) - (2)(13)=14
(T)x, =14
Multiply by (1/7): x, =2
Overall transformation: (5/7)Eqnl — (2/7)Eqn2

Consider a 2x2 example:
2%, +3x, =8 (eqnl) }Example
5x, +4x, =13 (eqn 2)

Form two new equations:
(-417)(#1) + (3/7) (#2) and
(5/7)(#1) -(2/7)(#2)

X, =1(eqnl)

Example
X, =2 (eqn 2)

Consider a 2x2 example:
* Ax=b
2%, +3x, =8 (eqnl) Ao 2 3 b 8
5x, +4x,=13 (eqn2)| |5 4) = |13
Form two new equations:
(-4/7)(#1) + (3/7) (#2) and

(517)(#1) -(2/T)(#2)
-4/7 37

M=
[5/7 —2/7J




Multiply Ax=b by M on both sides

(320 A 4
@Ox, +(0)x, =1

((1) \gl(;(j :(3 O)x, +(M)x, =2

MA Wik diteanet téres faroned
to diegoagions?

Multiply Ax=b by M on both sides

* MAx=Mb or

HM A

In general, premultiplication
of A by a nonsingular M I
1 0Yx _ 1 repreéedt sealingM, such that
0 1hx ) |2 contbmptRshictriIA is diagonal,
\ 2 pergatisrpesiiem is solved
equations. (all valid

MA has been transformed to p
diagonal form (unit matrix) | [°P€"@ ions)

Activity 5: Part |1




Consider a 2x2 example:

2%, +3x, =8 (eqnl) Example

5x, +4x, =13 (eqn 2)
In a combination of the two approaches, find a combination
of equaﬁ%ﬂplﬁ&eeﬁﬂﬂirZanihgald’i@Wt@ﬁ]%nd then do
routine sulghiittivas x, eliminated:

O)#D) + (-2) (#2)
2%, +3x, =8 (egnl)

iR N

Consider a 2x2 example:

2%, +3%, =8 (eqnl
% +3%, =8 (eanl) Example
5x, +4x, =13 (eqn 2)

[2 3][)(1)7(8j 2%, +3x, =8
0 7\x) \14) 7x,=14

Transform to upper triangmaks stem
Upper Triangular

Solve eqn 2 for x, and substitu
Eqn 1.

Solve Egn 1 for x,

Etc.

Consider a 2x2 example:
2%, +3%, =8 (egnl) }Example
5x, +4x, =13 (eqn 2)

Rewrite the equations:

X =1(8-3x,)=4-2x, (eqnl)
x, =1(13-5x ) =L-5x, (eqn2)

Consider an iteratived approd (jnqer what conditions

X1[n+1] -4 '%X[zn] (eqnl) would you expect this to
] 13 5ol be most likely to succeed?
X U =3-1x" (ean2)




Rats in a Maze

« Green cells have food

* Red cells do not

* Yellow cells cannot be
reached.

< Rats cannot return from
red or green cells.

« For any white cell, the
probability of finding
food is the average of
the four neighbors
(why?)

Rats in a Maze

For white cells:

+P, 4P

i+, j

[P +R

Rats in a Maze

For cell (5,4)

1
Z (P4,4 + P6,4 + P5,3 + Ps,s)




Gauss Seidel Method for finding
Pl,J
 Assign those P-values that are known.
» Guess at the initial values for the other P’s
« Do an iterative updating of the internal P’s until
they converge (if they do):
for eachiand j

new 1 old old old old
Pi,j :(4J(Pi—1,j + Pi+1,j + Pi‘j—l+ P )

”n i, j+1

update P’ =PR""

Gauss Seidel Method for finding
Pij
* For the (8 x 7) maze, there would be 56 such
equations
* 26 of them are constants (4 being corners)
30 must be iterated as below (30 egs, 30 unks)

for eachiand j
n i+

e =4 ot i+ R+ R

update PR%* =P""

Jacobi Method for finding P;;

« Assign those P-values that are known.
» Guess at the initial values for the other P’s
Do an iterative updating of the internal P’s until
they converge (if they do):
for eachiand j

new 1 Ol o] o] o]
A = Rz e o)

update at end of cycle P =pP""




Is this a system of linear

equations?
Ap=b Ap=b
Py : b, :
p=| 2 || P b{b? LY
Pu by

1
P, —[ZJ(PM +P,,+P,+P)=0

Pss
......... p5,3
Pl,4 =1
Ap=b




0 -25 0 1 0 -25 -25 —-25|p,,

There are 56 eqs for the P;;
Rows of A have only 5 nonzero elements at most: sparse
26 rows are diagonal and 30 are more general.

Can be reduced from start to 30 equations-30 unknowns

Two MP2 Issues

» Convergence criterion changed to absolute rather
than relative. Why?

» Turner gives a nice algorithm for Gauss Seidel in
matrix notation on page 236-37. Whereas | have
suggested an algorithm where each iteration
explicitly loops over the rows, he suggests one in
which this work is in a matrix/vector product.

» Why might we favor one rather than other?

One approach to solving the system

* Ax=b

 Find the inverse A of the matrix A and multiply both
sides by it.
AlAX=Ab or Ix=x= Alb

 Inthe example, Al is found by the inv function of Matlab

to be:
—.5714 4286 The same matrix we found by
7143 —-.2857 elementary row
manipulations before.
x=A1lb This approach transforms A into

diagonal (unit matrix) form.




Issues with the inverse

If Alisinverse of A (inv(A)),

The explicit formation of A1 is
computationally expensive and numerically
problematic. In most cases, we don’t need
this explicit inverse of the matrix.

Triangular Linear Systems

¢ Viathe inverse of A, A was transformed to

diagonal form. This is computationally difficult
and not necessary.

« Consider an A that is upper triangular.

Ay A, Az X by
A=|0 Ap Ayp| X |= bz
0 0 az\x b,

No further transformation is necessary.
Backward substitution.
— Start with Eq 3: agyX; = by
— Solve 3d equation : X5 = by/ag,.
— Substitute the value of x5 into the 2d eqn:
X, + 8% =D,
X, = (b, — 8% )/,
X, = (bz —ay (:TZ» Ay

10



» Now we know x; and X,.
— Solve Eq 1 for x;.

X, +apX, +aXy =D Substitute the
a,x = (b —a,x—a,x;) previously obtained
X = (b1 —aX, - aiSXS)/aﬂ values of x, and x;

Starting from the last equation, we solve for
each x; in terms of the previously found

values. -
fori=n-1,1
Xi:[bi_zaijxj]/aii X, = b,/ a,,

j=i+l

Matlab code for backward
substitution

» First find the last value: _[b n
x(n) = b(n)/a(n,n) X =|0- Zaijxj Ch

j=i+l

* Loop over the remaining rows of the matrix:
fori=n-1:-1:1
x(i) = (b(i) - a(i,i+1:n)*x(i+1:n))/a(i,i)
end
 Organized as dot product between the partial row

of A and partial vector X. |Whatis the (big O)
complexity here?

Consider column approach

A X, + 8, X, +aX, =D, Solve eqn 3 for X,

= b2 Substitute into Eqns 2 1
)I and 1, accumulating on
3 = b3 the right hand side.

85X, + 8y

8

8, %, + 8%, = by —a,%, =b, —a, (b, / ay,)
A%, =0, —a;%; =b, - azs(bslass)

Solve Eqn 2 for x, Xg =hy/ag,
and substitute into

each equation

above it.

11



Saxpy algorithm for backward
substitution

 Loop over all except first row of the matrix:
forj=n:-1:2
x() = b()/a(.j)
b(1:j-1) = b(1:j-1) - x(j) *a(1:j-1,j)
end
x(1) = b(1)/a(1,1)
* Aseach x; is found, it is then subtracted from the
rows above j in the matrix, with the sum being
accumulated in_b; (a vector operation)

Forward Substitution

If A is lower triangular, start with equation 1,
solving for x; and substitute into the subsequent
row in the matrix. Similar to back subst
algorithms.

a; 0 0)x) (b
A=|a, a, 0 |x,|=|b,
a31 a32 a33 X3 b3

Activity 6, Part I.

How to transform general system
A to upper triangular
 Begin with 1t column, design an algorithm
that zeros out all the elements below A,

* Proceed to 2" column and zero out all
elements beneath A,, without further
changing the 15t column.

« Continue across all columns of matrix A

« Consider the 2" step, where the first
column has been transformed already.

12



How to transform to triangular form

» Consider the matrix

9 8
4
6

o
A~ N oo

027

B~ ©

o

*To zero out Ag,,
multiply the 2" row by
(-4/7) and add to the
third.

*To zero out Ay,
multiply the 2" row by
(-2/7) and add to the
fourth.

These multipliers combine the 2d equation with the
3d and 4th to create zeros in the 2d column.

How to transform to triangular form

» Consider the matrix

9

o
A~ N o

0 2 7 4

8 9
4 7
6 1

*Premultiply by M
1 00
01 00

M =
0 =10
0 2201

These multipliers combine the 2d equation with the
3d and 4th to create zeros in the 2d column.

Activity 6: Part |1

» Zeroes out the lower
part of column 2.

9 8 8 9
07 4 7
0 0 37143 -3
0 0 58571 2

The transformation
matrix M was a unit
matrix,except for
elements

Mz,= Azl Ag,

My, = -AglAg
Subtract Egn 2 from
Eqgns 3 and 4 so as to
produce desired
Zeroes.

13



Gaussian Elimination

 Proceed across the matrix column by column, and
the overall transformation matrix would be the
product of those for each column:

e M=M;M,M,
(M zeroes col 1; M, zeroes col 2; M, zeroes col 3)

e Multiply both sides of the equation
M;M,M;Ax = M;M,M, b

* M;M,M,A is upper triangular and the system can
be solved by backward substitution.

Choice of Pivot elements

* In determining the elimination matrix, elements of
the form Ay /A were used. Ayds known as the
pivot.

« If the diagonal element is zero, then the rows of
the matrix must be permuted to bring a nonzero
pivot into place. (order of the eqns is irrelevant)

« If the pivot is small, the rows should still be
permuted to obtain a larger pivot, which reduces
rounding error and increases stability.

Rows 2-4 could have been permuted
here before transformation

* Consider the matrix A

9 8 89 100 0y9 8 89 9 8 89
07 47 001007 47 0 461
=PA= =
0 461 01000 46 1 07 47
027 4 000 1)\0 27 4 (027 4

14



* In general, stable algorithms employ pivoting,
where the column of the matrix is scanned for the
largest remaining element to use as the pivot.

Note that the permutation

matrix can also be piv=[1 3 2 4]
represented by a vector PA = A(piv,:)
giving the final sequence of Pb =b(piv)

rows. Call this vector piv.

Formally this looks like inversion

e Ax=b
« x=Alb , (we have solved for x)

* (the inverse is not explicitly formed, however. We
form the product A-tb, which is a vector.)

 The explicit inverse is seldom needed.

* AX = B (generalized to several columns)

« X=A1B

« If the product A1B appears in a formula, do not

form A-texplicitly. Instead, solve the system
AX =B for X (= A1B) column by column.

LU Factorization

Suppose A can be factored into the product
of lower and upper triangular matrices.

A = LU (defer until later how to do this)
We can write the system to be solved as
LUx=b

The product Ux is a vector and can be
denotedy: Ux=y

15



Solution using L and U

e LUx= L(Ux) = Ly = b where Ux=y
« Solve Ly = b by forward substitution.
y is in intermediate solution.

* Solve Ux=y by backward substitution.
x is the desired final solution.

One possible LU Factorization
» Let MA be upper triangular by design

(we already know how to define M).

 Define U = MA

* LU = LMA=A, and the process can be
viewed as factoring A into lower and upper
triangular parts.

« LMA = A (L is inverse of M by definition)

» We can write the system to be solved as
LUx=b

How do we find the factors L and
U?

« We have already seen how to transform the
matrix from full form to upper triangular.

o M=MM,M,

Multiply both sides of the equation

M;M,M,Ax = M;M,M, b

Consider the inverse of that transformation.

16



Inverse Transformations

* Each transformation M; has an inverse M;™.
« The form of the transformation matrix is

The multipliers n; have been chosen to
create zeros in the 2d column of A by
subtracting multiples of the 2d equation
from the other ones.

<

1
© o oo

s
cor oo
or o oo
= oo oo

*The inverse of this is of the form

1 0 000

01000 Each transformation has a lower
M=o -n 10 0 triangular inverse. M1 =L,

0 -n, 010 9 SV T

0 -n; 00 1

Inverse Transformations
o Activity 6: Part I11

Inverse Transformations

» The overall transformation M is the product of the

column transformation matrices
* The overall inverse L (lower triangular) is the

product of individual inverses.

M =M,M,M,
M= =[M,M,M,[* = MMM =L, L,L =L
L=L,L,L,
Since MA is upper triangular (call it U), and L is lower

triangular and the inverse of M: LMA = LU is the LU
factorization of A.

17



* In general, stable algorithms employ pivoting,
where the column of the matrix is scanned for the
largest remaining element to use as the pivot.

 The effect of the permutations must be accounted
for. The permutation matrix P is also returned,
along with L and U.

Ax=b Note that the permutation
LU = PA matrix can also be
represented by a vector

LUx=Pb giving the final sequence of
rows. Call this vector piv.
Ux=y PA = A(piv,:)
Ly =Pb Pb = b(piv)

Complexity

For a single step (i.e. column) in the elimination
process, there are approx n elements to be zeroed.
But the remainder of each row is also multiplied.
Number of multiplications for one column goes
like n?

There are n columns, so overall work goes
something like n®

Since we only work on the lower triangular part of
the matrix, the actual work goes like (1/3)n3.

Number of operations ~ (1/3)n3

1 0 0O
98 8 9
0100 07 4 7
M = M A=
0 =% 1 0 0 0 37143 -3
0 ; 0 1 0 0 58571 2

18



» Backward and forward substitutions each
require about n? operations.

« Total is about (1/3)n3 + n2, If there are
multiple right hand sides (b vectors), only
the n? step is repeated for each one.

* Explicit calculation of the inverse requires
the same as performing n of these
repetitions. Therefore, calculation of A
explicitly requires at least n® operations, a
factor of three slower.

» Banded systems. ¢ Sparse systems.
There are special

Greatly simplified if methods applicable to
the band is not wide very, very large
(lower dimensionality matrices.
for complexity of « Iterative methods for
calculation). systems in which a

 Tridiagonal matrices reasonable guess can
are particularly useful. be made initially.

Example using Matlab - define A and b.

e »A= » b =1[5;2;6;3]
[1,2,3,4;2,1,4,1;3,4,1
5:2,3,5,2] b= .
. A = 2
1 2 3 4 6
2 1 4 1 3
3 41 5
2 3 5 2

19



Solve Ax=b using the \ operator
(invokes Gaussian elimination with
full square A)

« »Xx=A\b ¢ check the condition
e X= number:

02113 » cond(A,1)

-0.1549 ans =

0.1408

11600 17.3944

Solve by Explicit LU Factorization

(note that L is actually permuted) |\ does

substitution

» [L,U] = Iu(A) ;’E’:L\b here. |
B 6.0000
0.3333 -0.4000 0.8000 1.0000 igggg
0.6667 10000 0 0 33200
1.0000 0 0 0 :
06667 -0.2000 10000 0 | [»x=Uly
U= X=
30000 4.0000 1.0000 5.0000 02113
0 -16667 33333 -2.3333 -0.1549
0 0 50000 -1.8000 0.1408
o 0 0 2.8400 1.1690

Solve by Explicit LU Factorization

(note that L is actually permuted)

The pivot information is stored in L, which is not actually
lower triangular in this case.

Using the call [L,U,P] = lu(A), the function returns a truly
lower triangular L and the matrix P necessary to get good
pivoting. Now LU = PA and we must use P in the solution:

y = L\(P*b)
x = Uly

20



Comparison of methods for
efficiency

Run the demo MethodComparison.m for different size
systems.

Iterative Refinement

Ax=Db
r =b— Ax = 0for exact solution
r=b—AX where X is an approximate solution
Ay =r solve for y with usual methods
AX+y)=b-r+r=>b,and X+y=x

*If you can solve Ay=r approximately to get an

approximate solution ¥

*Then there is an iterative procedure that may

converge to the exact solution x.

*This might be useful if for numeric reasons the
usual algorithms yield inaccurate solutions.

Iterative Refinement

The LU procedure is useful here because the
factoring into L and U is only done once (n),
where as the successive substitutions are n2. It is
the same A and same L and U.

Run demo IterRefinement.m to see how this works.
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Iterative Refinement

The LU procedure is useful here because the
factoring into L and U is only done once (n3),
where as the successive substitutions are n2. It is
the same A and same L and U.

In problem 3-4: ... by the iterative refinement
method and by the forward/backward substitution
methods.

Should read:

... by the forward/backward substitution methods
and then by iterative refinement

Least Squares Fitting Problem

CSS 455
Chapter 7 of Turner

Experimental Situation

A measurement of some property y is made
at a value of some variable t.

t is the independent variable
y is the dependent variable
t and y both have experimental uncertainties

Measurements at the set {t,,t,,...,t,} yields
the set {y,,Y5.....Ym} Observations.

22



Model Fitting of Data (Regression)

« Often desirable to describe the relationship
between {t} and {y} in functional form.

— Useful for tabulation, interpolation,
extrapolation, etc.,

— Useful for comparison to fundamental theory
that often is expressed in terms of analytical
functions.

» Common Problem: find a function f(t) that
will reproduce the experimental values y(t)

Functional Form of f(t)

« Select terms in t either systematically or
intuitively. Examples:
—polynomial int: 1, 3.t
— trigonometric in t: 1, sin(t), sin(2t),...sin(nt)
1, cos(t), cos(2t),...cos(nt)

» Combine the selected terms in order to get
the “best” fit to the experimental data.

« |If the function is written as a linear
combination of the terms, this problem
becomes a linear optimization problem to
determine the values of the coefficients x:

f(t) = Xy(1) + Xot + X512 +...+ Xt "L
« The function is linear in coefficients, but

not in the independent variable. [The x’s are now
the coefficients.

23



What is the “best” value for the x’s?

» Common Choice: Minimize the error between
values of y; and the corresponding values of f(t;),
where the set {x} is now treated as a variable to be
optimized. (i.e. find the ‘best’ set of {x}
coefficients.)

 Linear Least Squares minimizes the sum of the
errors in the Euclidean (2-norm) sense:

mind (v, - f 4, )°

Corresponding to each observation is

an equation:
o f(t; X) »y;, , i =1..m(# of observations)
* With the terms written explicitly:
Xy + Xt + Xt + A Xt 2y, i =1..m

There are m equations with n terms in each
equation. The values of t; and y; are experimental
data, and the values of x; are to be chosen by the
least squares procedure.

» An exact fit is obtained when y; = f(t; ,x) for
all i. (i.e. the experimental values of the
independent variable are reproduced
exactly by the model function.) [interpolant - ch4 |

« In general exact fits are obtained when the
number of terms in f is at least as great as
the number of observations (n > m).

» Most often, however, m>n, and only an
approximate fit to the data is to be obtained.
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Matlab code for least squares
polynomial fit to data.

sDemo program Tor ch
=lame all

clear all

cle

- o1 e .z.a]'-

tho1 % w0107 3

When the degree of the
polynomial is insufficient
for an exact fit, polyfit uses
the least squares criterion
for an optimum fit to data.

P2 = polyfitic,y,m):

F& = polyvall?:
plot iz, F2, ' -k'

5 data sets - exact fit to:
y=1+2t+3t?
* Data:

tval :=[0,1,1.5, 2, 3];
yval :=[1,6,10.75,17,34]; |

e Two Least Sqr Fits: o ?
Green Line (5 terms)
Red Line (3 terms) = p

» Bothare exact fitsand " e
fall on top of each U )
other and the data. *

5 data sets - approx fit to :
y~1+2t+3t?

e Data:
tval :=[0,1,1.5, 2, 3]; 50
yval :=[1,6,10.,17,34]; w
e Two Least Sqr Fits:
Green Line (5 terms) Lol
Red Line (3 terms) 20
* Greenis exact fit and
red is best 3-term fit. " e
» “Exact” fit does not lie o 7 Z 3 !

close to desired curve
between data points.




5 data sets - approx fit to :
y~1+2t+3t?

« Data: Yty vst
xval:=[0, 1, 15, 2, 3];
yval :=[11, 7, 10,18.7,31] 0 /
+ Two Least Sgr Fits: = -
Green Line - exact with D_-----'1 2 3 1
5 terms
Red Line - best with 3 20
terms a
* “Exact” fit is not even
qualitatively correct. o

Formulate in Matrix Notation

» Let A be a matrix of the t values. Each row
of A corresponds to one equation or one
measurement.

Let b be a vector of the observations y in
each equation.

Let x be the vector of the x coefficients to
be determined.

Ax=Db

t, t | % |=| Vs
1 t, t2 th )\ %) Yn
N
—_
mxn
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2
Consider the 1 t ot Y1
case with 8 1 t. t?
data points to 2 22 Y2
be fit with a 1t t « Ys
3-term 2 1
polynomial. 1 t4 t4 X |= Ya
, =
m=8andn=3. 1 t5 t52 X Ys
Ais8x3, 1t 2007 |y
x is3x1 1t t72 Y,
bis8x1 2
1t t Ys

Strategy to find the best fit...

» The residual will not be zero because the fit
to the data is approximate. Minimize the
magnitude of the residual:

r=b-Ax (rismxl)
Ir| =r"r=(b-Ax)T(b-Ax)

To minimize, differentiate with respect to
the vector x (or xT) and set equal to zero:

Strategy to find the best fit...

 The residual will not be zero because the fit
to the data is approximate. Minimize the
magnitude of the residual:

r=b-Ax (rismxl)
Irf =r"r=(b-Ax)"(b-Ax)

2 ()= 2 (b + x"ATAX-2xATb)=0
OX OX
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Ir" =b™b+(AX)"(AX) ~bTAx—(AX)"b
—AT=TAT BT XxTATAX—X"ATb—bTAx

T T_JTAT
O =xAb s hTh+xTATAX-2x"ATb

To minimize, differentiate with respect to
the vector x (or xT) and set equal to zero:

0

2 ()= 2 (b"b+ x"ATAX-2xATb)=0
OX OX

0
&Qr\z)z (2ATAX-2ATb)=0
ATAX-ATb=0
or

ATAx=ATb Ihis is novx g
standard” linear

ATAis (n x m)(m x n) or (n X n) equation problem

X is (n x 1) of dimension n.

ATb is (n x m)(m x 1) or (n x 1)

* Finding the best approximate solution for
the linear least squares equations is
equivalent to finding the exact solution to
this square system (normal equations).

« The solution to this exact problem is the
value of the x vector that minimizes the
magnitude of the residual of the least
squares problem.
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