
1

Systems of Linear Eqns

CSS455 – Winter 2012
Ch7 of Turner

Systems of Linear Eqns are
Common in Scientific Applications

• System of 2 eqns and 2 unknowns is given
by:

a11x1 + a12x2 = b1

The a’s and b’s are known,
perhaps from a measurement

a21x1 + a22x2 = b2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

1

2

1

2221

1211 ,,
b
b

and
x
x

aa
aa

bxA

or from theory.

•Can be generalized to m equations, n unknowns.
•Can be represented by matrix eqn: Ax = b, where

Consider a 2x2 example:
Example

xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

Activity 5, Part I: With your partner, solve this system and
keep track of how you do it.keep track of how you do it.

2

Consider a 2x2 example:
Example

xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

First Approach: step-wise solution and substitution:

Solve Eqn 1 for x2: x2= (8-2x1)/3

Substitute x2 into Eqn 2: 5x1 + 4{(8-2x1)/3} = 13

Solve for x1:

5x1 + (32/3) – (8/3)x1= 13
x1 = 1

Consider a 2x2 example:
Example

xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

First Approach: step-wise solution and substitution:

Substitute x1 into Eqn 1: 2(1) + 3x2 = 8

Solve for x2:

3x2 =6

x2 = 2

The algorithm is simple and deterministic:

Solve Eqn 1 for x2
Substitute x2 into Eqn 2
Solve Eqn 2 for x1
Substitute x1 into Eqn 1
Solve for x2

It becomes much more complex as the
number of unknowns increases. It is still
deterministic. The algebra becomes
somewhat complex.

Consider a 2x2 example:

To eliminate x2 , subtract 4 times Eqn1 from 3

Example
xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

Second approach: manipulate entire equations: adding,
subtracting, scaling in order to eliminate variables from the

times Eqn 2:
(3)Eqn 2 – (4) Eqn 1:
15x1-8x1 +12x2 –12x2 = 3(13) – (4)(8)=7
(7)x1 = 7
Multiply by (1/7): x1=1

Overall transformation: (3/7)Eqn2 – (4/7)Eqn1

g g
equations.

3

Consider a 2x2 example:

To eliminate x1, subtract 2 times Eqn2 from 5

Example
xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

times Eqn 1:
(5)Eqn 1 – (2) Eqn 2:
10x1-10x1 +15x2 –8x2 = 5(8) – (2)(13)=14
(7)x2 = 14
Multiply by (1/7): x2 =2

Overall transformation: (5/7)Eqn1 – (2/7)Eqn2

Consider a 2x2 example:

Form two new equations:

Example
xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

(-4/7)(#1) + (3/7) (#2) and
(5/7)(#1) -(2/7)(#2)

Example
x
x

⎭
⎬
⎫

=
=

2)(eqn 2
1)(eqn 1

2

1

Consider a 2x2 example:
• Ax=b

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎭
⎬
⎫

=+
=+

13
8

45
32

2)(eqn1345
1)(eqn 832

21

21 bA
xx
xx

⎠⎝⎠⎝⎭+ 13452)(eqn 1345 21 xx

Form two new equations:
(-4/7)(#1) + (3/7) (#2) and
(5/7)(#1) -(2/7)(#2)

7/27/5

7/37/4
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=M

4

Multiply Ax=b by M on both sides
• MAx = Mb or

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

−

−

13
8

45
32

25
7
3

7
4

2

1
25

7
3

7
4

x
x

⎠⎝⎠⎝⎠⎝⎠⎝⎠⎝ 1345 77277 x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
1

10
01

2

1

x
x

MA has been transformed
to diagonal

What are the two
equations?

2)1()0(
1)0()1(

21

21

=+
=+

xx
xx

Multiply Ax=b by M on both sides
• MAx = Mb or

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

−

−

13
8

45
32

25
7
3

7
4

2

1
25

7
3

7
4

x
x

⎠⎝⎠⎝⎠⎝⎠⎝⎠⎝ 1345 77277 x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
1

10
01

2

1

x
x

In general, premultiplication
of A by a nonsingular M
represents scaling,
combination, and
permutation of the
equations. (all valid
operations)

MA has been transformed to
diagonal form (unit matrix)

Find a matrix M, such that
the product MA is diagonal,
and the problem is solved.

Activity 5: Part II

5

Consider a 2x2 example:

Replace Eqn 2 with a new one

Example
xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

In a combination of the two approaches, find a combination
of equations that results in a triangular system, and then do

that has x1 eliminated:
(5)(#1) + (-2) (#2)

() ()
⎪⎭

⎪
⎬
⎫

=−==−+−
=+

14)13(2)8(578151010
1)(eqn 832

221

21

xxx
xx

q g y
routine substitution.

⎭
⎬
⎫

=
=+
 147

832

2

21

x
xx

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
14
8

70
32

2

1

x
x

Consider a 2x2 example:

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛
⎟
⎞

⎜
⎛ 832 1x

Example
xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

⎫=+ 832 21 xx
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
14
8

70
32

2

1

x
x

Transform to upper triangular system

Solve eqn 2 for x2 and substitute into
Eqn 1.

Solve Eqn 1 for x1

Etc.

Upper Triangular

⎭
⎬
⎫

=
+

 147
832

2

21

x
xx

Consider a 2x2 example:
Example

xx
xx

⎭
⎬
⎫

=+
=+

2)(eqn 1345
1)(eqn 832

21

21

Rewrite the equations:

() ⎫31 ()
() ⎭

⎬
⎫

=−=
=−=

2)(eqn x-513
1)(eqn x- 4 38

14
5

4
13

14
1

2

22
3

22
1

1

xx
xx

Consider an iteratived approach:

⎭
⎬
⎫

=
=

+

+

2)(eqn x-
1)(eqn x- 4

[n]
14

5
4

13]1[
2

[n]
22

3]1[
1
n

n

x
x

Under what conditions
would you expect this to
be most likely to succeed?

6

P11 P12 =0 P13 =0 P14
=0

P15
=0

P16
=0

P17

P21
=1

P22 P23 P24 P25 P26 P27
=0

P31
=1

P32 P33 P34 P35 P36 P37
=0

P41
=1

P42 P43 P44 P45 P46 P47
=0

Rats in a Maze

• Green cells have food
• Red cells do not
• Yellow cells cannot be

reached.
• Rats cannot return from

P51
=1

P52 P53 P54 P55 P56 P57
=0

P61
=1

P62 P63 P64 P65 P66 P67
=0

P71
=1

P72 P73 P74 P75 P76 P77
=0

P81 P82 =0 P83 =0 P84
=0

P85
=0

P86
=0

P87

Rats cannot return from
red or green cells.

• For any white cell, the
probability of finding
food is the average of
the four neighbors
(why?)

P11 P12
=0

P13
=0

P14
=0

P15
=0

P16
=0

P17

P21
=1

P22 P23 P24 P25 P26 P27
=0

P31
=1

P32 P33 P34 P35 P36 P37
=0

P41
=1

P42 P43 P44 P45 P46 P47
=0

P51 P52 P53 P54 P55 P56 P57
Rats in a MazeP51

=1
P52 P53 P54 P55 P56 P57

=0
P61
=1

P62 P63 P64 P65 P66 P67
=0

P71
=1

P72 P73 P74 P75 P76 P77
=0

P81 P82
=0

P83
=0

P84
=0

P85
=0

P86
=0

P87

For white cells:

()1,1,,1,1, 4
1

+−+− +++⎟
⎠
⎞

⎜
⎝
⎛= jijijijiji PPPPP

P11 P12
=0

P13
=0

P14
=0

P15
=0

P16
=0

P17

P21
=1

P22 P23 P24 P25 P26 P27
=0

P31
=1

P32 P33 P34 P35 P36 P37
=0

P41
=1

P42 P43 P44 P45 P46 P47
=0

P51 P52 P53 P54 P55 P56 P57
Rats in a MazeP51

=1
P52 P53 P54 P55 P56 P57

=0
P61
=1

P62 P63 P64 P65 P66 P67
=0

P71
=1

P72 P73 P74 P75 P76 P77
=0

P81 P82
=0

P83
=0

P84
=0

P85
=0

P86
=0

P87

For cell (5,4)

()5,53,54,64,44,5 4
1 PPPPP +++⎟
⎠
⎞

⎜
⎝
⎛=

7

Gauss Seidel Method for finding
Pi,j

• Assign those P-values that are known.
• Guess at the initial values for the other P’s
• Do an iterative updating of the internal P’s until p g

they converge (if they do):

()
new
ji

old
ji

old
ji

old
ji

old
ji

old
ji

new
ji

PPupdate

PPPPP

jandieachfor

,,

1,1,,1,1, 4
1

=

+++⎟
⎠
⎞

⎜
⎝
⎛= +−+−

Gauss Seidel Method for finding
Pi,j

• For the (8 x 7) maze, there would be 56 such
equations

• 26 of them are constants (4 being corners)
• 30 must be iterated as below (30 eqs, 30 unks)

()
new
ji

old
ji

old
ji

old
ji

old
ji

old
ji

new
ji

PPupdate

PPPPP

jandieachfor

,,

1,1,,1,1, 4
1

=

+++⎟
⎠
⎞

⎜
⎝
⎛= +−+−

Jacobi Method for finding Pi,j

• Assign those P-values that are known.
• Guess at the initial values for the other P’s
• Do an iterative updating of the internal P’s until p g

they converge (if they do):

()
newold PPcycleofendatupdate =

+++⎟
⎠
⎞

⎜
⎝
⎛= +−+−

old
ji

old
ji

old
ji

old
ji

new
ji PPPPP

jandieachfor

1,1,,1,1, 4
1

8

Is this a system of linear
equations?

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛

=

p
bAp

⎞⎛⎞⎛

=

b
bAp

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= ji

N

p

p

p
p

p ,2

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

= ji

N

b

b

b
b

,2

1

b

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

=

0
4,4p

bAp

() 0
4
1

5,53,54,64,44,5 =+++⎟
⎠
⎞

⎜
⎝
⎛− PPPPP

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

−−−−
0

25.25.25.01025.0

3,5

5,5

4,6

4,5

p
p
p

p

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

=

10000100

41p

bAp

14,1 =P

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

4,1p

9

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

−−−−

=

0
25.25.25.01025.0 4,5

4,4

p

p

bAp

There are 56 eqs for the Pi,j
Rows of A have only 5 nonzero elements at most: sparse
26 rows are diagonal and 30 are more general.
Can be reduced from start to 30 equations-30 unknowns

⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜

⎝⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜

⎝
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜

⎝ 3,5

5,5

4,6

p
p
p

Two MP2 Issues

• Convergence criterion changed to absolute rather
than relative. Why?

• Turner gives a nice algorithm for Gauss Seidel in
matrix notation on page 236-37. Whereas I have
suggested an algorithm where each iteration
explicitly loops over the rows, he suggests one in
which this work is in a matrix/vector product.

• Why might we favor one rather than other?

One approach to solving the system

• Ax=b
• Find the inverse A-1 of the matrix A and multiply both

sides by it.
A-1Ax=A-1b or Ix = x = A-1b

• In the example, A-1 is found by the inv function of Matlab
to be:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
2857.7143.

4286.5714. The same matrix we found by
elementary row
manipulations before.

x = A-1b This approach transforms A into
diagonal (unit matrix) form.

10

Issues with the inverse
If A-1 is inverse of A (inv(A)),

⎟
⎟
⎞

⎜
⎜
⎛

=== −− 00
001

IAAAA 11

The explicit formation of A-1 is
computationally expensive and numerically
problematic. In most cases, we don’t need
this explicit inverse of the matrix.

⎟
⎟

⎠
⎜
⎜

⎝ 100

Triangular Linear Systems

• Via the inverse of A , A was transformed to
diagonal form. This is computationally difficult
and not necessary.

• Consider an A that is upper triangular• Consider an A that is upper triangular.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

3

2

1

33

2322

131211

00
0

b
b
b

x
x
x

a
aa
aaa

A

• No further transformation is necessary.
• Backward substitution.

– Start with Eq 3: a33x3 = b3

– Solve 3d equation : x3 = b3/a33.
Substitute the value of x into the 2d eqn:– Substitute the value of x3 into the 2d eqn:

()
()() 222322

2232322

2323222

33

3 aabx
axabx
bxaxa

a
b−=

−=
=+

11

• Now we know x3 and x2.
– Solve Eq 1 for x1:

()
()

3132121111

1313212111

b
xaxabxa
bxaxaxa

−−=
=++ Substitute the

previously obtained
values of x and x

Starting from the last equation, we solve for
each xi in terms of the previously found
values.

() 1131321211 axaxabx −−= values of x2 and x3

ii

n

ij
jijii axabx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

+= 1

for i = n-1,1

xn = bn / ann

Matlab code for backward
substitution

• First find the last value:
x(n) = b(n)/a(n,n) ii

n

ij
jijii axabx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

+= 1

• Loop over the remaining rows of the matrix:
for i = n-1:-1:1

x(i) = (b(i) - a(i,i+1:n)*x(i+1:n))/a(i,i)
end

• Organized as dot product between the partial row
of A and partial vector x. What is the (big O)

complexity here?

Consider column approach

3333

2323222

1313212111

bxa
bxaxa
bxaxaxa

=
=+
=++ Solve eqn 3 for x3

Substitute into Eqns 2 1
and 1, accumulating on
the right hand side3333 bxa the right hand side.

()
()

3333

3332323232222

3331313131212111

/
/
/

abx
ababxabxa
ababxabxaxa

=
−=−=
−=−=+

Solve Eqn 2 for x2
and substitute into
each equation
above it.

12

Saxpy algorithm for backward
substitution

• Loop over all except first row of the matrix:
for j = n:-1:2

x(j) = b(j)/a(j,j)
b(1 j 1) b(1 j 1) (j) * (1 j 1 j)b(1:j-1) = b(1:j-1) - x(j) *a(1:j-1,j)

end
x(1) = b(1)/a(1,1)

• As each xj is found, it is then subtracted from the
rows above j in the matrix, with the sum being
accumulated in bi (a vector operation)

Forward Substitution

• If A is lower triangular, start with equation 1,
solving for x1 and substitute into the subsequent
row in the matrix. Similar to back subst
l i halgorithms.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

3

2

1

333231

2221

11

0
00

b
b
b

x
x
x

aaa
aa

a
A

Activity 6, Part I.

How to transform general system
A to upper triangular

• Begin with 1st column, design an algorithm
that zeros out all the elements below A11

• Proceed to 2nd column and zero out allProceed to 2 column and zero out all
elements beneath A22, without further
changing the 1st column.

• Continue across all columns of matrix A
• Consider the 2nd step, where the first

column has been transformed already.

13

How to transform to triangular form

• Consider the matrix

⎟
⎞

⎜
⎛ 9889

•To zero out A32,
multiply the 2nd row by
(-4/7) and add to the
third

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

4720
1640
7470

A

third.

•To zero out A42,
multiply the 2nd row by
(-2/7) and add to the
fourth.

These multipliers combine the 2d equation with the
3d and 4th to create zeros in the 2d column.

How to transform to triangular form

• Consider the matrix

⎟
⎞

⎜
⎛ 9889

•Premultiply by M

⎟
⎞

⎜
⎛ 0001

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

4720
1640
7470

A

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

−

−

100
010
0010

7
2

7
4

M

These multipliers combine the 2d equation with the
3d and 4th to create zeros in the 2d column.

• Zeroes out the lower
part of column 2.

• The transformation
matrix M was a unit
matrix,except for
elements
M32= -A32/A22

⎟
⎞

⎜
⎛ 9889

Activity 6: Part II

M42 = -A42/A22

• Subtract Eqn 2 from
Eqns 3 and 4 so as to
produce desired
zeroes.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
=

28571.500
37143.300

7470
9889

AM

14

• Proceed across the matrix column by column, and
the overall transformation matrix would be the
product of those for each column:

• M = M3M2M1

Gaussian Elimination

3 2 1
(M1 zeroes col 1; M2 zeroes col 2; M3 zeroes col 3)

• Multiply both sides of the equation
M3M2M1Ax = M3M2M1 b

• M3M2M1A is upper triangular and the system can
be solved by backward substitution.

Choice of Pivot elements

• In determining the elimination matrix, elements of
the form Ajk/Akk were used. Akkis known as the
pivot.

• If the diagonal element is zero, then the rows of
the matrix must be permuted to bring a nonzero
pivot into place. (order of the eqns is irrelevant)

• If the pivot is small, the rows should still be
permuted to obtain a larger pivot, which reduces
rounding error and increases stability.

Rows 2-4 could have been permuted
here before transformation

• Consider the matrix A

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛
⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛ 9889988900019889

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝
⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=⇒

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

4720
7470
1640

4720
1640
7470

1000
0010
0100

4720
1640
7470

PAA

15

• In general, stable algorithms employ pivoting,
where the column of the matrix is scanned for the
largest remaining element to use as the pivot.

Note that the permutation
matrix can also be
represented by a vector :)(

]4231[
piv

piv
APA =

=
represented by a vector
giving the final sequence of
rows. Call this vector piv.

)(
:),(

piv
piv
bPb

APA
=

=

Formally this looks like inversion
• Ax = b
• x = A-1b , (we have solved for x)
• (the inverse is not explicitly formed, however. We

form the product A-1b, which is a vector.)
• The explicit inverse is seldom needed.
• AX = B (generalized to several columns)
• X = A-1B
• If the product A-1B appears in a formula, do not

form A-1 explicitly. Instead, solve the system
AX = B for X (= A-1B) column by column.

LU Factorization
• Suppose A can be factored into the product

of lower and upper triangular matrices.
• A = LU (defer until later how to do this)
• We can write the system to be solved as

LUx = b
• The product Ux is a vector and can be

denoted y: Ux = y

16

Solution using L and U

• LUx= L(Ux) = Ly = b where Ux=y
• Solve Ly = b by forward substitution.

y is in intermediate solutiony is in intermediate solution.
• Solve Ux=y by backward substitution.

x is the desired final solution.

One possible LU Factorization
• Let MA be upper triangular by design

(we already know how to define M).

• Define U = MA
• LU = LMA=A, and the process can be p

viewed as factoring A into lower and upper
triangular parts.

• LMA = A (L is inverse of M by definition)

• We can write the system to be solved as
LUx = b

How do we find the factors L and
U?

• We have already seen how to transform the
matrix from full form to upper triangular.

• M = M3M2M1M M3M2M1

• Multiply both sides of the equation
M3M2M1Ax = M3M2M1 b

• Consider the inverse of that transformation.

17

Inverse Transformations
• Each transformation Mi has an inverse Mi

-1.
• The form of the transformation matrix is

⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

0010
00010
00001

M

The multipliers ni have been chosen to
create zeros in the 2d column of A by

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝

=

1000
0100
0010

5

4

3

n
n
niM subtracting multiples of the 2d equation

from the other ones.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−
−=−

1000
0100
0010
00010
00001

5

4

3
1

n
n
niM

Each transformation has a lower
triangular inverse. Mi

-1 = Li

•The inverse of this is of the form

Inverse Transformations
• Activity 6: Part III

Inverse Transformations
• The overall transformation M is the product of the

column transformation matrices
• The overall inverse L (lower triangular) is the

product of individual inverses.p

[]
3

1
1

1

LLLL
LLLLMMMMMMM

MMMM

21

321
1

3
1

2
1

123
1

23

=
≡===

=
−−−−−

Since MA is upper triangular (call it U), and L is lower
triangular and the inverse of M: LMA = LU is the LU
factorization of A.

18

• In general, stable algorithms employ pivoting,
where the column of the matrix is scanned for the
largest remaining element to use as the pivot.

• The effect of the permutations must be accounted
for. The permutation matrix P is also returned,
along with L and U.g

PbLy
yUx

PbLUx
PALU
bAx

=
=

=
=
= Note that the permutation

matrix can also be
represented by a vector
giving the final sequence of
rows. Call this vector piv.

)(
:),(

piv
piv

bPb
APA
=
=

Complexity

• For a single step (i.e. column) in the elimination
process, there are approx n elements to be zeroed.
But the remainder of each row is also multiplied.
N b f l i li i f lNumber of multiplications for one column goes
like n2

• There are n columns, so overall work goes
something like n3

• Since we only work on the lower triangular part of
the matrix, the actual work goes like (1/3)n3.

Number of operations ∼ (1/3)n3

⎟
⎞

⎜
⎛ 0001

⎟
⎞

⎜
⎛ 9889

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

−

−

100
010
0010

7
2

7
4

M
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
=

28571.500
37143.300

7470
AM

19

• Backward and forward substitutions each
require about n2 operations.

• Total is about (1/3)n3 + n2. If there are
multiple right hand sides (b vectors), only
the n2 step is repeated for each one.

• Explicit calculation of the inverse requires
the same as performing n of these
repetitions. Therefore, calculation of A-1

explicitly requires at least n3 operations, a
factor of three slower.

• Banded systems.

Greatly simplified if
h b d i id

• Sparse systems.
There are special
methods applicable to

lthe band is not wide
(lower dimensionality
for complexity of
calculation).

• Tridiagonal matrices
are particularly useful.

very, very large
matrices.

• Iterative methods for
systems in which a
reasonable guess can
be made initially.

Example using Matlab - define A and b.

• » A =
[1,2,3,4;2,1,4,1;3,4,1
,5;2,3,5,2]

» b = [5;2;6;3]

b =
5

, ; , , ,]
• A =

1 2 3 4
2 1 4 1
3 4 1 5
2 3 5 2

5
2
6
3

20

Solve Ax=b using the \ operator
(invokes Gaussian elimination with

full square A)

• » x = A\b • check the condition• » x = A\b
• x =

0.2113
-0.1549
0.1408
1.1690

• check the condition
number:
» cond(A,1)
ans =

17.3944

Solve by Explicit LU Factorization
(note that L is actually permuted)

» [L,U] = lu(A)

L =
0.3333 -0.4000 0.8000 1.0000
0 6667 1 0000 0 0

» y=L\b
y =

6.0000
-2.0000
-1.4000

\ does
substitution
here.

0.6667 1.0000 0 0
1.0000 0 0 0
0.6667 -0.2000 1.0000 0

U =
3.0000 4.0000 1.0000 5.0000

0 -1.6667 3.3333 -2.3333
0 0 5.0000 -1.8000
0 0 0 2.8400

3.3200

» x = U\y
x =

0.2113
-0.1549
0.1408
1.1690

Solve by Explicit LU Factorization
(note that L is actually permuted)

The pivot information is stored in L, which is not actually
lower triangular in this case.

Using the call [L,U,P] = lu(A), the function returns a truly
l t i l L d th t i P t t dlower triangular L and the matrix P necessary to get good
pivoting. Now LU = PA and we must use P in the solution:

y = L\(P*b)

x = U\y

21

Comparison of methods for
efficiency

Run the demo MethodComparison.m for different size
systems.

Iterative Refinement

yr Ay
 xAbr

Axbr
bAx

=
−=

=−=
=

methods usualwith for solve
solution eapproximatan is x̂ whereˆ

solutionexact for 0

x yx b,rr-by)xA(=+=+=+ ˆˆ and
•If you can solve Ay=r approximately to get an
approximate solution
•Then there is an iterative procedure that may
converge to the exact solution x.
•This might be useful if for numeric reasons the
usual algorithms yield inaccurate solutions.

ŷ

Iterative Refinement
The LU procedure is useful here because the
factoring into L and U is only done once (n3),
where as the successive substitutions are n2. It is
the same A and same L and U.

Run demo IterRefinement.m to see how this works.

22

Iterative Refinement
The LU procedure is useful here because the
factoring into L and U is only done once (n3),
where as the successive substitutions are n2. It is
the same A and same L and U.

In problem 3-4: … by the iterative refinement
method and by the forward/backward substitution
methods.
Should read:
… by the forward/backward substitution methods
and then by iterative refinement

Least Squares Fitting Problem

CSS 455
Chapter 7 of Turner

Experimental Situation

• A measurement of some property y is made
at a value of some variable t.

• t is the independent variablet is the independent variable
• y is the dependent variable
• t and y both have experimental uncertainties
• Measurements at the set {t1,t2,...,tm} yields

the set {y1,y2,...,ym} observations.

23

Model Fitting of Data (Regression)

• Often desirable to describe the relationship
between {t} and {y} in functional form.
– Useful for tabulation, interpolation,

extrapolation etcextrapolation, etc.,
– Useful for comparison to fundamental theory

that often is expressed in terms of analytical
functions.

• Common Problem: find a function f(t) that
will reproduce the experimental values y(t)

Functional Form of f(t)

• Select terms in t either systematically or
intuitively. Examples:
– polynomial in t: 1, t, t2, t3,...,tnpolynomial in t: 1, t, t , t ,...,t
– trigonometric in t: 1, sin(t), sin(2t),...sin(nt)

1, cos(t), cos(2t),...cos(nt)

• Combine the selected terms in order to get
the “best” fit to the experimental data.

• If the function is written as a linear
combination of the terms, this problem
becomes a linear optimization problem to p p
determine the values of the coefficients x:

f(t) = x1(1) + x2t + x3t2 +...+ xnt n-1

• The function is linear in coefficients, but
not in the independent variable. The x’s are now

the coefficients.

24

What is the “best” value for the x’s?
• Common Choice: Minimize the error between

values of yi and the corresponding values of f(ti),
where the set {x} is now treated as a variable to be
optimized. (i.e. find the ‘best’ set of {x}
coefficients.)

• Linear Least Squares minimizes the sum of the
errors in the Euclidean (2-norm) sense:

2

1
)),((min x

x i

m

i
i tfy −∑

=

Corresponding to each observation is
an equation:

• f(ti ,x) ≈ yi, , i = 1...m(# of observations)
• With the terms written explicitly:

x1 + x2ti + x3ti
2 + + x ti

n-1 ≈ yi i = 1 mx1 + x2ti + x3ti + ...+ xnti ≈ yi, i 1...m

There are m equations with n terms in each
equation. The values of ti and yi are experimental
data, and the values of xi are to be chosen by the
least squares procedure.

• An exact fit is obtained when yi = f(ti ,x) for
all i. (i.e. the experimental values of the
independent variable are reproduced
exactly by the model function.)

• In general exact fits are obtained when the
b f t i f i t l t t

Interpolant – Ch4

number of terms in f is at least as great as
the number of observations (n ≥ m).

• Most often, however, m> n, and only an
approximate fit to the data is to be obtained.

25

Matlab code for least squares
polynomial fit to data.

When the degree of the
polynomial is insufficient
for an exact fit, polyfit uses
the least squares criterion
for an optimum fit to data.

5 data sets - exact fit to:
y = 1 + 2t + 3t2

• Data:
tval := [0,1,1.5, 2, 3];
yval := [1,6,10.75,17,34];
T L t S Fit• Two Least Sqr Fits:
Green Line (5 terms)
Red Line (3 terms)

• Both are exact fits and
fall on top of each
other and the data.

5 data sets - approx fit to :
y ≈ 1 + 2t + 3t2

• Data:
tval := [0,1,1.5, 2, 3];
yval := [1,6,10. ,17,34];

• Two Least Sqr Fits:• Two Least Sqr Fits:
Green Line (5 terms)
Red Line (3 terms)

• Green is exact fit and
red is best 3-term fit.

• “Exact” fit does not lie
close to desired curve
between data points.

26

5 data sets - approx fit to :
y ≈ 1 + 2t + 3t2

• Data:
xval := [0, 1, 1.5, 2, 3];

yval := [1.1, 7, 10,18.7,31]
• Two Least Sqr Fits:Two Least Sqr Fits:

Green Line - exact with
5 terms
Red Line - best with 3
terms

• “Exact” fit is not even
qualitatively correct.

Formulate in Matrix Notation

• Let A be a matrix of the t values. Each row
of A corresponds to one equation or one
measurement.

• Let b be a vector of the observations y in
each equation.

• Let x be the vector of the x coefficients to
be determined.

bAx =

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

=⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

−

−

−

n

n

n

y
y
y

x
x
x

ttt
ttt
ttt

3

2

1

3

2

1

1
3

2
33

1
2

2
22

1
1

2
11

1
1
1

⎟
⎟
⎟

⎠
⎜
⎜
⎜

⎝
⎟
⎟
⎟

⎠
⎜
⎜
⎜

⎝
⎟
⎟
⎟

⎠
⎜
⎜
⎜

⎝
−

mn
n
mmm yxttt

33

12

333

1

m x n
n x 1 m x 1

27

⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎛

=⎟
⎟
⎞

⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎛

4

3

2

1

12
44

2
33

2
22

2
11

1
1
1
1

y
y
y
y

x
x

tt
tt
tt
ttConsider the

case with 8
data points to
be fit with a
3-term
polynomial.

⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜

⎝

=
⎟
⎟

⎠
⎜
⎜

⎝

⎟
⎟
⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜
⎜
⎜

⎝ 8

7

6

5
3

2

2
88

2
77

2
66

2
55

1
1
1
1

y
y
y
y

x
x

tt
tt
tt
tt

p y

m = 8 and n = 3.

A is 8 x 3.

x is 3 x 1

b is 8 x 1

Strategy to find the best fit...
• The residual will not be zero because the fit

to the data is approximate. Minimize the
magnitude of the residual:

)()(
1) x is (

2 AxbAxbrrr
rAxbr

TT −−==
−= m

To minimize, differentiate with respect to
the vector x (or xT) and set equal to zero:

Strategy to find the best fit...
• The residual will not be zero because the fit

to the data is approximate. Minimize the
magnitude of the residual:

)()(
1) x is (

2 AxbAxbrrr
rAxbr

TT −−==
−= m

() () 022 =−+
∂
∂

=
∂
∂ bAxAxAxbb

x
r

x
TTTTT

28

AxbbAxAxAxbb
b(Ax)AxbAxAxbbr
TTTTTAx(Ax)

TTT

TTT

−−+⎯⎯⎯⎯ →⎯

−−+=
= T

T

2)()(

bAxAxAxbb TTTTbAxAx)(b TTTT

2 −+⎯⎯⎯⎯⎯ →⎯ = T

To minimize, differentiate with respect to
the vector x (or xT) and set equal to zero:

() () 022 =−+
∂
∂

=
∂
∂ bAxAxAxbb

x
r

x
TTTTT

() () 0222 =−=
∂
∂ bAAxAr
x

TT

bAAxA TT =− 0

bAAxA TT =
or

ATA is (n x m)(m x n) or (n x n)

x is (n x 1)

ATb is (n x m)(m x 1) or (n x 1)

This is now a
“standard” linear
equation problem
of dimension n.

• Finding the best approximate solution for
the linear least squares equations is
equivalent to finding the exact solution to
this square system (normal equations).

• The solution to this exact problem is the• The solution to this exact problem is the
value of the x vector that minimizes the
magnitude of the residual of the least
squares problem.

