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Systems of Linear Eqns

CSS455 – Winter 2012
Ch7 of Turner

Systems of Linear Eqns are 
Common in Scientific Applications

• System of 2 eqns and 2 unknowns is given 
by:

a11x1 + a12x2 = b1

The a’s and b’s are known, 
perhaps from a measurement 

a21x1 + a22x2 = b2
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or from theory.

•Can be generalized to m equations, n unknowns.
•Can be represented by matrix eqn: Ax = b, where

Consider a 2x2 example:
Example
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Activity 5, Part I: With your partner, solve this system and 
keep track of how you do it.keep track of how you do it.
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Consider a 2x2 example:
Example

xx
xx
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First Approach:  step-wise solution and substitution:

Solve Eqn 1 for x2:  x2= (8-2x1)/3

Substitute x2 into Eqn 2:  5x1 + 4{(8-2x1)/3} = 13

Solve for x1:  

5x1 + (32/3) – (8/3)x1= 13
x1 = 1

Consider a 2x2 example:
Example

xx
xx
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First Approach:  step-wise solution and substitution:

Substitute x1 into Eqn 1:  2(1) + 3x2 = 8

Solve for x2:  

3x2 =6

x2 = 2

The algorithm is simple and deterministic:

Solve Eqn 1 for x2
Substitute x2 into Eqn 2
Solve Eqn 2 for x1
Substitute x1 into Eqn 1
Solve for x2

It becomes much more complex as the 
number of unknowns increases.  It is still 
deterministic.  The algebra becomes 
somewhat complex.

Consider a 2x2 example:

To eliminate x2 , subtract 4 times Eqn1 from 3 

Example
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Second approach:  manipulate entire equations: adding, 
subtracting, scaling in order to eliminate variables from the 

times Eqn 2:
(3)Eqn 2 – (4) Eqn 1:  
15x1-8x1 +12x2 –12x2 = 3(13) – (4)(8)=7 
(7)x1 = 7
Multiply by (1/7):  x1=1

Overall transformation: (3/7)Eqn2 – (4/7)Eqn1

g g
equations.
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Consider a 2x2 example:

To eliminate x1, subtract 2 times Eqn2 from 5 

Example
xx
xx
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times Eqn 1:
(5)Eqn 1 – (2) Eqn 2:  
10x1-10x1 +15x2 –8x2 = 5(8) – (2)(13)=14 
(7)x2 = 14
Multiply by (1/7):  x2 =2

Overall transformation: (5/7)Eqn1 – (2/7)Eqn2

Consider a 2x2 example:

Form two new equations: 

Example
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(-4/7)(#1) + (3/7) (#2)   and
(5/7)(#1) -(2/7)(#2) 

Example
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Consider a 2x2 example:
• Ax=b

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

⎭
⎬
⎫

=+
=+

13
8

45
32

2)(eqn1345
1)(eqn   832

21

21 bA
xx
xx

⎠⎝⎠⎝⎭+ 13452)(eqn   1345 21 xx

Form two new equations: 
(-4/7)(#1) + (3/7) (#2)   and
(5/7)(#1) -(2/7)(#2)
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Multiply Ax=b by M on both sides
• MAx = Mb or 
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MA has been transformed 
to diagonal

What are the two 
equations?
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Multiply Ax=b by M on both sides
• MAx = Mb or 
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In general, premultiplication 
of A by a nonsingular M
represents scaling, 
combination, and 
permutation of the 
equations. (all valid 
operations)

MA has been transformed to 
diagonal form (unit matrix)

Find a matrix M, such that 
the product MA is diagonal, 
and the problem is solved.

Activity 5: Part II
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Consider a 2x2 example:

Replace Eqn 2 with a new one 

Example
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xx
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In a combination of the two approaches, find a combination 
of equations that results in a triangular system, and then do 

that has x1 eliminated: 
(5)(#1) + (-2) (#2)   
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Consider a 2x2 example:
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Transform to upper triangular system

Solve eqn 2 for x2 and substitute into 
Eqn 1.

Solve Eqn 1 for x1

Etc.

Upper Triangular
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Consider a 2x2 example:
Example
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Rewrite the equations:
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Consider an iteratived approach:
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Under what conditions 
would you expect this to 
be most likely  to succeed?
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P11 P12 =0 P13 =0 P14 
=0

P15 
=0

P16 
=0

P17

P21 
=1

P22 P23 P24 P25 P26 P27 
=0

P31 
=1

P32 P33 P34 P35 P36 P37 
=0

P41 
=1

P42 P43 P44 P45 P46 P47 
=0

Rats in a Maze

• Green cells have food
• Red cells do not
• Yellow cells cannot be 

reached.
• Rats cannot return from

P51
=1

P52 P53 P54 P55 P56 P57
=0

P61 
=1

P62 P63 P64 P65 P66 P67 
=0

P71
=1

P72 P73 P74 P75 P76 P77
=0

P81 P82 =0 P83 =0 P84 
=0

P85 
=0

P86 
=0

P87

Rats cannot return from 
red or green cells.

• For any white cell, the 
probability of finding 
food is the average of 
the four neighbors 
(why?)
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For white cells:
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Gauss Seidel Method for finding 
Pi,j

• Assign those P-values that are known.
• Guess at the initial values for the other P’s
• Do an iterative updating of the internal P’s until p g

they converge (if they do):
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Gauss Seidel Method for finding 
Pi,j

• For the (8 x 7) maze, there would be 56 such 
equations

• 26 of them are constants (4 being corners)
• 30 must be iterated as below (30 eqs, 30 unks) 
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Jacobi Method for finding Pi,j

• Assign those P-values that are known.
• Guess at the initial values for the other P’s
• Do an iterative updating of the internal P’s until p g

they converge (if they do):
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Is this a system of linear 
equations?
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There are 56 eqs for the Pi,j
Rows of A have only 5 nonzero elements at most:  sparse
26 rows are diagonal and 30 are more general.
Can be reduced from start to 30 equations-30 unknowns
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Two MP2 Issues

• Convergence criterion changed to absolute rather 
than relative.  Why?

• Turner gives a nice algorithm for Gauss Seidel in 
matrix notation on page 236-37.  Whereas I have 
suggested an algorithm where each iteration 
explicitly loops over the rows, he suggests one in 
which this work is in a matrix/vector product.

• Why might we favor one rather than other?

One approach to solving the system

• Ax=b
• Find the inverse A-1 of the matrix A and multiply both 

sides by it.
A-1Ax=A-1b  or    Ix = x =  A-1b 

• In the example, A-1 is found by the inv function of Matlab 
to be:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
2857.7143.

4286.5714. The same matrix we found by 
elementary row 
manipulations before.

x = A-1b This approach transforms A into 
diagonal (unit matrix) form.
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Issues with the inverse
If  A-1 is inverse of A (inv(A)),

⎟
⎟
⎞

⎜
⎜
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=== −− 00
001

IAAAA 11

The explicit formation of A-1 is 
computationally expensive and numerically 
problematic.  In most cases, we don’t need 
this explicit inverse of the matrix.

⎟
⎟

⎠
⎜
⎜

⎝ 100

Triangular Linear Systems

• Via the inverse of A ,  A was transformed to 
diagonal form.  This is computationally difficult 
and not necessary.

• Consider an A that is upper triangular• Consider an A that is upper triangular.
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⎟
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33

2322

131211

00
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b
b
b

x
x
x

a
aa
aaa

A

• No further transformation is necessary.
• Backward substitution.

– Start with Eq 3:  a33x3 = b3

– Solve 3d equation : x3 = b3/a33.
Substitute the value of x into the 2d eqn:– Substitute the value of x3 into the 2d eqn:

( )
( )( ) 222322

2232322

2323222

33

3 aabx
axabx
bxaxa

a
b−=

−=
=+
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• Now we know x3 and x2.
– Solve Eq 1 for x1:

( )
( )

3132121111

1313212111

b
xaxabxa
bxaxaxa

−−=
=++ Substitute the 

previously obtained 
values of x and x

Starting from the last equation, we solve for 
each xi in terms of the previously found 
values.

( ) 1131321211 axaxabx −−= values of x2 and x3

ii

n

ij
jijii axabx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

+= 1

for i = n-1,1

xn = bn / ann

Matlab code for backward 
substitution

• First find the last value:  
x(n) = b(n)/a(n,n) ii

n

ij
jijii axabx ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∑

+= 1

• Loop over the remaining rows of the matrix:
for i = n-1:-1:1

x(i) = (b(i) - a(i,i+1:n)*x(i+1:n))/a(i,i)
end

• Organized as dot product between the partial row 
of A and partial vector x. What is the  (big O) 

complexity here?

Consider column approach

3333

2323222

1313212111

           
bxa
bxaxa
bxaxaxa

=
=+
=++ Solve eqn 3 for x3

Substitute into Eqns 2 1 
and 1, accumulating on 
the right hand side3333                      bxa the right hand side.

( )
( )

3333

3332323232222

3331313131212111

/                      
/           
/

abx
ababxabxa
ababxabxaxa

=
−=−=
−=−=+

Solve Eqn 2 for x2
and substitute into 
each equation 
above it.
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Saxpy algorithm for backward 
substitution

• Loop over all except first row of the matrix:
for j = n:-1:2

x(j) = b(j)/a(j,j)
b(1 j 1) b(1 j 1) (j) * (1 j 1 j)b(1:j-1) = b(1:j-1) - x(j) *a(1:j-1,j) 

end
x(1) = b(1)/a(1,1)

• As each xj is found, it is then subtracted from the 
rows above j in the matrix, with the sum being 
accumulated in bi  (a vector operation)

Forward Substitution

• If A is lower triangular, start with equation 1, 
solving for x1 and substitute into the subsequent 
row in the matrix.  Similar to back subst 
l i halgorithms.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

1

3

2

1

333231

2221

11

0
00

b
b
b

x
x
x

aaa
aa

a
A

Activity 6, Part I.

How to transform general system 
A to upper triangular

• Begin with 1st column, design an algorithm 
that zeros out all the elements below A11

• Proceed to 2nd column and zero out allProceed to 2 column and zero out all 
elements beneath A22, without further 
changing the 1st column.

• Continue across all columns of matrix A
• Consider the 2nd step, where the first 

column has been transformed already.
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How to transform to triangular form

• Consider the matrix

⎟
⎞

⎜
⎛ 9889

•To zero out A32, 
multiply the 2nd row by 
(-4/7) and add to the 
third

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

4720
1640
7470

A

third.

•To zero out A42, 
multiply the 2nd row by 
(-2/7) and add to the 
fourth.

These multipliers combine the 2d equation with the 
3d and 4th to create zeros in the 2d column.

How to transform to triangular form

• Consider the matrix

⎟
⎞

⎜
⎛ 9889

•Premultiply by M

⎟
⎞

⎜
⎛ 0001

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

4720
1640
7470

A

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

−

−

100
010
0010

7
2

7
4

M

These multipliers combine the 2d equation with the 
3d and 4th to create zeros in the 2d column.

• Zeroes out the lower 
part of column 2.

• The transformation 
matrix M was a unit 
matrix,except for 
elements 
M32= -A32/A22

⎟
⎞

⎜
⎛ 9889

Activity 6: Part II

M42 = -A42/A22

• Subtract Eqn 2 from 
Eqns 3 and 4 so as to 
produce desired 
zeroes.

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
=

28571.500
37143.300

7470
9889

AM
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• Proceed across the matrix column by column, and 
the overall transformation matrix would be the 
product of those for each column:

• M = M3M2M1

Gaussian Elimination

3 2 1  
(M1 zeroes col 1; M2 zeroes col 2; M3 zeroes col 3)  

• Multiply both sides of the equation
M3M2M1Ax = M3M2M1 b

• M3M2M1A is upper triangular and the system can 
be solved by backward substitution.

Choice of Pivot elements

• In determining the elimination matrix, elements of 
the form Ajk/Akk were used.  Akkis known as the 
pivot.

• If the diagonal element is zero, then the rows of 
the matrix must be permuted to bring a nonzero 
pivot into place. (order of the eqns is irrelevant)

• If the pivot is small, the rows should still be 
permuted to obtain a larger pivot, which reduces 
rounding error and increases stability.

Rows 2-4 could have been permuted 
here before transformation

• Consider the matrix A

⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛
⎟
⎞

⎜
⎛

⎟
⎞

⎜
⎛ 9889988900019889

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝
⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=⇒

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

4720
7470
1640

4720
1640
7470

1000
0010
0100

4720
1640
7470

PAA
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• In general, stable algorithms employ pivoting, 
where the column of the matrix is scanned for the 
largest remaining element to use as the pivot.

Note that the permutation 
matrix can also be 
represented by a vector :)(

]4231[
piv

piv
APA =

=
represented by a vector 
giving the final sequence of 
rows. Call this vector piv.

)(
:),(

piv
piv
bPb

APA
=

=

Formally this looks like inversion
• Ax = b
• x = A-1b  ,  (we have solved for x)
• (the inverse is not explicitly formed, however.  We 

form the product A-1b, which is a vector.)
• The explicit inverse is seldom needed.  
• AX = B (generalized to several columns)
• X = A-1B
• If the product A-1B appears in a formula, do not 

form A-1 explicitly.  Instead, solve the system
AX = B for X (= A-1B) column by column.

LU Factorization
• Suppose A can be factored into the product 

of lower and upper triangular matrices.
• A = LU  (defer until later how to do this)
• We can write the system to be solved as

LUx = b
• The product Ux is a vector and can be 

denoted y:   Ux = y
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Solution using L and U

• LUx= L(Ux) = Ly = b where Ux=y
• Solve Ly = b by forward substitution. 

y is in intermediate solutiony is in intermediate solution.
• Solve Ux=y by backward substitution.

x is the desired final solution.

One possible LU Factorization
• Let MA be upper triangular  by design 

(we already know how to define M).

• Define U = MA
• LU = LMA=A, and the process can be p

viewed as factoring A into lower and upper 
triangular parts.

• LMA = A (L is inverse of M by definition)

• We can write the system to be solved as
LUx = b

How do we find the factors L and 
U?

• We have already seen how to transform the 
matrix from full form to upper triangular.

• M = M3M2M1M  M3M2M1

• Multiply both sides of the equation
M3M2M1Ax = M3M2M1 b

• Consider the inverse of that transformation.
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Inverse Transformations
• Each transformation Mi has an inverse Mi

-1.
• The form of the transformation matrix is

⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

0010
00010
00001

M

The multipliers ni have been chosen to 
create zeros in the 2d column of A by 

⎟
⎟
⎟
⎟

⎠
⎜
⎜
⎜
⎜

⎝

=

1000
0100
0010

5

4

3

n
n
niM subtracting multiples of the 2d equation 

from the other ones.

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−
−=−

1000
0100
0010
00010
00001

5

4

3
1

n
n
niM

Each transformation has a lower 
triangular inverse. Mi

-1 = Li

•The inverse of this is of the form

Inverse Transformations
• Activity 6: Part III

Inverse Transformations
• The overall transformation M is the product of the 

column transformation matrices
• The overall inverse L (lower triangular) is the 

product  of individual inverses.p

[ ]
3

1
1

1

LLLL
LLLLMMMMMMM

MMMM

21

321
1

3
1

2
1

123
1

23

=
≡===

=
−−−−−

Since MA is upper triangular (call it U), and L is lower 
triangular and the inverse of M:  LMA = LU is the LU 
factorization of A.
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• In general, stable algorithms employ pivoting, 
where the column of the matrix is scanned for the 
largest remaining element to use as the pivot.

• The effect of the permutations must be accounted 
for.  The permutation matrix P is also returned, 
along with L and U.g

PbLy
yUx

PbLUx
PALU
bAx

=
=

=
=
= Note that the permutation 

matrix can also be 
represented by a vector 
giving the final sequence of 
rows. Call this vector piv.

)(
:),(

piv
piv

bPb
APA
=
=

Complexity

• For a single step (i.e. column) in the elimination 
process, there are approx n elements to be zeroed.  
But the remainder of each row is also multiplied.  
N b f l i li i f lNumber of multiplications for one column goes 
like n2

• There are n columns, so overall work goes 
something like n3

• Since we only work on the lower triangular part of 
the matrix, the actual work goes like (1/3)n3.

Number of operations ∼ (1/3)n3

⎟
⎞

⎜
⎛ 0001

⎟
⎞

⎜
⎛ 9889

⎟⎟
⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜
⎜

⎝

=

−

−

100
010
0010

7
2

7
4

M
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
=

28571.500
37143.300

7470
AM
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• Backward and forward substitutions each 
require about n2 operations.

• Total is about (1/3)n3 + n2.  If there are 
multiple right hand sides (b vectors), only 
the n2 step is repeated for each one.

• Explicit calculation of the inverse requires 
the same as performing n of these 
repetitions.  Therefore, calculation of A-1

explicitly requires at least n3 operations, a 
factor of three slower.

• Banded systems.

Greatly simplified if 
h b d i id

• Sparse systems.
There are special 
methods applicable to 

lthe band is not wide 
(lower dimensionality 
for complexity of 
calculation).

• Tridiagonal matrices 
are particularly useful.

very, very large 
matrices.

• Iterative methods for 
systems in which a 
reasonable guess can 
be made initially.

Example using Matlab - define A and b.

• » A = 
[1,2,3,4;2,1,4,1;3,4,1
,5;2,3,5,2]

» b = [5;2;6;3]

b =
5

, ; , , , ]
• A =

1     2     3     4
2     1     4     1
3     4     1     5
2     3     5     2

5
2
6
3



20

Solve Ax=b using the \ operator 
(invokes Gaussian elimination with 

full square A)

• » x = A\b • check the condition• » x = A\b
• x =

0.2113
-0.1549
0.1408
1.1690

• check the condition 
number:
» cond(A,1)
ans =

17.3944

Solve by Explicit LU Factorization 
(note that L is actually permuted)

» [L,U] = lu(A)

L =
0.3333   -0.4000    0.8000    1.0000
0 6667 1 0000 0 0

» y=L\b
y =

6.0000
-2.0000
-1.4000

\ does 
substitution 
here.

0.6667    1.0000         0            0
1.0000         0             0            0
0.6667   -0.2000    1.0000        0

U =
3.0000    4.0000    1.0000    5.0000

0   -1.6667       3.3333   -2.3333
0         0           5.0000   -1.8000
0         0            0            2.8400

3.3200

» x = U\y
x =

0.2113
-0.1549
0.1408
1.1690

Solve by Explicit LU Factorization 
(note that L is actually permuted)

The pivot information is stored in L, which is not actually 
lower triangular in this case.

Using the call [L,U,P] = lu(A), the function returns a truly 
l t i l L d th t i P t t dlower triangular L and the matrix P necessary to get good 
pivoting.  Now LU = PA and we must use P in the solution:

y = L\(P*b)

x = U\y
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Comparison of methods for 
efficiency

Run the demo MethodComparison.m for different size 
systems.

Iterative Refinement

yr  Ay
 xAbr

Axbr
bAx

=
−=

=−=
=

methods usualwith for  solve   
solution eapproximatan  is x̂   whereˆ

solutionexact for  0

x  yx b,rr-by)xA( =+=+=+ ˆˆ and
•If you can solve Ay=r approximately to get an 
approximate solution   
•Then there is an iterative procedure that may 
converge to the exact solution x.
•This might be useful if for numeric reasons the 
usual algorithms yield inaccurate solutions.

ŷ

Iterative Refinement
The LU procedure is useful here because the 
factoring into L and U is only done once (n3), 
where as the successive substitutions are n2.  It is 
the same A and same L and U.

Run demo IterRefinement.m to see how this works.
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Iterative Refinement
The LU procedure is useful here because the 
factoring into L and U is only done once (n3), 
where as the successive substitutions are n2.  It is 
the same A and same L and U.

In problem 3-4: … by the iterative refinement 
method and by the forward/backward substitution 
methods.
Should read:
…  by the forward/backward substitution methods 
and then by iterative refinement

Least Squares Fitting Problem

CSS 455
Chapter 7 of Turner

Experimental Situation

• A measurement of some property y is made 
at a value of some variable t.

• t is the independent variablet is the independent variable
• y is the dependent variable 
• t and y both have experimental uncertainties
• Measurements at the set {t1,t2,...,tm} yields 

the set {y1,y2,...,ym} observations.
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Model Fitting of Data (Regression)

• Often desirable to describe the relationship 
between {t} and {y} in functional form.
– Useful for tabulation, interpolation, 

extrapolation etcextrapolation, etc.,
– Useful for comparison to fundamental theory 

that often is expressed in terms of analytical 
functions.

• Common Problem: find a function f(t) that 
will reproduce the experimental values y(t)

Functional Form of f(t)

• Select terms in t either systematically or 
intuitively.  Examples:
– polynomial in t: 1, t, t2, t3,...,tnpolynomial in t:  1, t, t , t ,...,t
– trigonometric in t: 1, sin(t), sin(2t),...sin(nt)

1, cos(t), cos(2t),...cos(nt)

• Combine the selected terms in order to get 
the “best” fit to the experimental data.

• If the function is written as a linear 
combination of the terms, this problem 
becomes a linear optimization problem to p p
determine the values of the coefficients x:

f(t) = x1(1) + x2t + x3t2 +...+ xnt n-1

• The function is linear in coefficients, but 
not in the independent variable. The x’s are now 

the coefficients.
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What is the “best” value for the x’s?
• Common Choice:  Minimize the error between 

values of yi and the corresponding values of f(ti), 
where the set {x} is now treated as a variable to be 
optimized.  (i.e. find the ‘best’ set of {x} 
coefficients.)

• Linear Least Squares minimizes the sum of the 
errors in the Euclidean (2-norm) sense:

2

1
)),((min x

x i

m

i
i tfy −∑

=

Corresponding to each observation is 
an equation:

• f(ti ,x) ≈ yi,   , i = 1...m( # of observations)
• With the terms written explicitly:

x1 + x2ti + x3ti
2 + + x ti

n-1 ≈ yi i = 1 mx1 + x2ti + x3ti + ...+ xnti ≈ yi,  i  1...m

There are m equations with n terms in each 
equation.  The values of ti and yi are experimental 
data, and the values of xi are to be chosen by the 
least squares procedure.

• An exact fit is obtained when yi = f(ti ,x) for 
all i.  (i.e. the experimental values of the 
independent variable are reproduced 
exactly by the model function.)

• In general exact fits are obtained when the 
b f t i f i t l t t

Interpolant – Ch4

number of terms in f is at least as great as 
the number of observations (n ≥ m).

• Most often, however, m> n, and only an 
approximate fit to the data is to be obtained.
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Matlab code for least squares 
polynomial fit to data.

When the degree of the 
polynomial is insufficient 
for an exact fit, polyfit uses 
the least squares criterion 
for an optimum fit to data.

5 data sets - exact fit to: 
y = 1 + 2t + 3t2

• Data:
tval := [0,1,1.5,     2,   3];
yval := [1,6,10.75,17,34];
T L t S Fit• Two Least Sqr Fits:
Green Line (5 terms)
Red Line (3 terms)

• Both are exact fits and 
fall on top of each 
other and the data.

5 data sets - approx fit to : 
y ≈ 1 + 2t + 3t2

• Data:
tval := [0,1,1.5,   2,   3];
yval := [1,6,10. ,17,34];

• Two Least Sqr Fits:• Two Least Sqr Fits:
Green Line (5 terms)
Red Line (3 terms)

• Green is  exact fit and 
red is best 3-term fit.

• “Exact” fit does not lie 
close to desired curve 
between data points.
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5 data sets - approx fit to : 
y ≈ 1 + 2t + 3t2

• Data:
xval := [0,     1,    1.5,   2,   3];

yval := [1.1,    7,    10,18.7,31]
• Two Least Sqr Fits:Two Least Sqr Fits:

Green Line - exact  with 
5 terms
Red Line - best  with 3 
terms

• “Exact” fit is not even 
qualitatively correct.

Formulate in Matrix Notation

• Let A be a matrix of the t values.  Each row 
of A corresponds to one equation or one 
measurement.

• Let b be a vector of the observations y in 
each equation.

• Let x be the vector of the x coefficients to 
be determined.

bAx =

⎟
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⎟
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⎟
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⎟
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ttConsider the 

case with 8 
data points to 
be fit with a 
3-term 
polynomial. 
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p y

m = 8 and n = 3.

A is 8 x 3.

x is 3 x 1

b is 8 x 1

Strategy to find the best fit...
• The residual will not be zero because the fit 

to the data is approximate. Minimize the 
magnitude of the residual:

)()(
1) x  is (       

2 AxbAxbrrr
rAxbr

TT −−==
−= m

To minimize, differentiate with respect to 
the vector x (or xT) and set equal to zero:

Strategy to find the best fit...
• The residual will not be zero because the fit 

to the data is approximate. Minimize the 
magnitude of the residual:

)()(
1) x  is (       

2 AxbAxbrrr
rAxbr

TT −−==
−= m

( ) ( ) 022 =−+
∂
∂

=
∂
∂ bAxAxAxbb

x
r

x
TTTTT
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AxbbAxAxAxbb
b(Ax)AxbAxAxbbr
TTTTTAx(Ax)

TTT

TTT

−−+⎯⎯⎯⎯ →⎯

−−+=
= T

T

 

2 )()(

bAxAxAxbb TTTTbAxAx)(b TTTT

2 −+⎯⎯⎯⎯⎯ →⎯ = T

To minimize, differentiate with respect to 
the vector x (or xT) and set equal to zero:

( ) ( ) 022 =−+
∂
∂

=
∂
∂ bAxAxAxbb

x
r

x
TTTTT

( ) ( ) 0222 =−=
∂
∂ bAAxAr
x

TT

bAAxA TT =− 0

bAAxA TT =
or

ATA is (n x m)(m x n) or (n x n)

x is (n x 1)

ATb is (n x m)(m x 1) or (n x 1) 

This is now a 
“standard” linear 
equation problem 
of dimension n.

• Finding the best approximate solution for 
the linear least squares equations is 
equivalent to finding the exact solution to 
this square system (normal equations).

• The solution to this exact problem is the• The solution to this exact problem is the 
value of the x vector that minimizes the 
magnitude of the residual of the least 
squares problem.


