
1

Accuracy/Precision/General 
Error Conceptsp

CSS 455, Winter 2012
Scientific Computing

Errata: chapter 1 of turner

• P3, 2nd equation: last term should be a-mβ-m

rather than a-mβm

• P3, Eq 1.3, last term should be bNβ-N rather q Nβ
than bNβN

• P11, Exercise 3.  third term in cosh(x) 
should be (x4/4!) rather that (x4/41)

• P282, Section 1.4, last answer (1.67618) is 
incorrect. 

Precision

• Precision refers to the number of 
significant figures or to the repeatability of 
the measurement Precision may bethe measurement.  Precision may be 
improved by larger data sets. 

• (For example, 6.022x1023 is a more precise
measurement of Avogadro’s Number than is 
6.02x1023.)



2

• Accuracy is an indication of how close the 
measurement is to the true value.  It may include 
systematic instrument error. 

Accuracy

y
• For example, 6.0 x1023 is a more accurate value of 

Avogadro’s Number than is 5.885646x1023.

Computational Error

• Algorithmic Error:
Truncation or discretization.  Some terms 
may be omitted.  For example, Taylor Series for a 
f nction:function:

"+
′′′

+
′′

+′+=+ )(
!3

)()(
!2

)())(()()( 32 δδδδ xfxfxfxfxf

We may truncate after just a few terms for small δ

Computational Error

• Data representation
Rounding. Computer representation of real 
numbers is generally inexact.  
– (The number 1/3 will be rounded to 0.3333333 in some 

floating point representations.)

• Error Propogation.
Calculations are often done in steps.  The later 
steps depend upon the results (and errors) of the 
earlier ones.



3

Error Analysis

• Absolute: approximate - true.  
– Units are the same as the measured values.

• Relative: Absolute error divided by true value.

true
trueapprox −

Unitless, expressed as fraction or percent.

Floating-Point Numbers
• Many scientific calculations are done with 

approximately 64 bits used for floating point 
representation: real*8, double precision (most 
workstations)

• The division of these  bits between exponent and 
mantissa fields varies from machine to machine.  
The precision is about 14-16 decimal digits and 
the exponent range is about 10±200 - 10 ±500

DU>> format long e
EDU>> n=2/3
n =

6.666666666666666e-001

Double Precision is default on 
Matlab.  Single precision and 
integer representation must be 
selected.

Floating Point Representation
UELbbbbbx E

N ≤≤×±=  with , β. 3210 …

•β is the base  (β=2 in binary system)

•b0 is implicit digit (defined by convention) (b0=1)0 p g ( y ) ( 0 )

•b1b2…bN is the mantissa field of N-digits

•E is the exponent field

E
N
Nbbbbbx β

β
...

βββ 3
3

2
21

0
⎭
⎬
⎫

⎩
⎨
⎧ +++++±=



4

Normalized Binary 
Representation

( ) ( ) ( ) ( ) ( ) ( ) 1216212120202119 01234
10 ++=++++=

4420011.1.10011 ×=

Implicit bit

Normalized Binary 
Representation

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) …++++++++=⎟
⎠
⎞

⎜
⎝
⎛ 8

2
17

2
16

2
15

2
14

2
13

2
12

2
1

2
1

10

11001100
5
1

⎞⎛ …… 11000011001100.0
256
1

128
1

16
1

8
1

5
1

10

=++++=⎟
⎠
⎞

⎜
⎝
⎛

3

10

201001100110.1
5
1 −×=⎟
⎠
⎞

⎜
⎝
⎛ …

Implicit bit

Parameters for typical floating-point 
systems

System β N L U 
IEEE  SP 2 24 -126 127 
IEEE DP 2 53 1 022 1 023IEEE DP 2 53 -1,022 1,023 
Cray 2 48 16,383 16,384 
HP Calc 10 12 -499 499 

 

 



5

UFL, OFL

• UFL = β L = smallest number represented:

– IEEE DP 2-1022= 2 2 x 10-308

EDU>> realmin
ans =
2.2251e-308

IEEE DP  2  2.2 x 10
• OFL = β U+1 (1- β -N)= largest floating pt 

number:
– IEEE DP: 21024(1-2-53) = 1.8x10+308.

EDU>> realmax
ans =
1.7977e+308

εmach

• With rounding by chop: 
εmach= β 1-N=2-52 ≈ 10-16 = max possible 
relative error in representing a numberp g

• With round to the nearest: 
εmach= ½β 1-N=2-53 ≈ 10-16

EDU>> eps
ans =
2.2204e-016

Notice...

• that UFL and OFL represent absolute magnitudes.
• that UFL’s can be often set to zero.
• that ε h represents relative precision.that εmach represents relative precision.

(rounding to nearest decreases εmach  by 1/2 
compared to chopping.)



6

Floating Point Arithmetic Errors

• Rounding
– Addition of numbers of different magnitudes will result 

in the sum being represented with roundoff.   
(F 6 di i )(For a 6 digit system)
192.403 + 0.635782 = 193.039

– If the small number is small enough, the total won’t 
change at all:
192.403 + 1.5x10-5 = 192.403

Floating Point Arithmetic Errors

• Rounding
– It makes a difference which way the series is summed 

(not commutative). (sum1overn demo Matlab)

1           

11

2
1

3
1

nlim
1

nlim
1

3
1

2
1

nlim

1

++++=

++++=∑
=

"

"
n n

Cancellation

• Subtraction can result in a loss of precision 
even if all numbers are representable. (this 
can be a very serious problem.)

1.55456 - 1.55435 = 0.00021= 2.1x10-4

(even with 6 digit representation, our result 
has only 2 digits of precision.)

demo showing order of subtraction (canc-err)
( )
( )"

"
4321

4321 3
1

−−−−=

=

b
a



7

Floating Point Arithmetic Errors

• Rounding
– Algorithms matter!  Compare (x-1)6 with the expanded 

polynomial.  

( ) 1615201561)( 234566 +−+−+−=−= xxxxxxxxf

What are the roots of this equation?

That is, for what x-values does f(x) = 0?

Floating Point Arithmetic Errors

• Rounding
– Algorithms matter!  Compare (x-1)6 with the expanded 

polynomial.  

( ) 1615201561)( 234566 +−+−+−=−= xxxxxxxxf

Matlab Zoomdemo.m, zoomdemocanc.m
Each subplot examines a region closer to the roots 
at x=1.  Notice the difference between the two 
algorithms.  
Group discussion:  why is this happening?

Floating Point Arithmetic Errors

• Rounding
– Algorithms matter!  Compare (x-1)6 with the expanded 

polynomial.  

( ) 1615201561)( 234566 +−+−+−=−= xxxxxxxxf

Matlab Zoomderivatives.m, zoomderivativescanc.m
What about using the derivatives instead?  What 
does the derivative do at a root?



8

Activity 2

Stirling Approx to n!

• There is a series expansion for n!:

nnn ⋅−⋅⋅⋅⋅= )1(321! …

( )"+++⎟
⎠
⎞

⎜
⎝
⎛≈ 2288

1
12

112!
nn

n

e
nnn π

Stirling Approximation to n!:
n

e
nnn ⎟
⎠
⎞

⎜
⎝
⎛≈ π2!

Truncation Error 
Stirling Approx

• Run Matlab Stirlingdemo.m
• Note that relative error is large, but 

becomes smaller as n increases.  This error 
is due to truncation of the series.

• Addition of the second term (1+1/12n…) 
reduces relative error by about two orders of 
magnitude.

• Return to Stirlingdemo.m



9

Ex 3, p 15 of text

• Abs and rel error of representing 1/5 in a 12-bit 
mantissa binary system.

3

10

2011001100110.1
5
1 −×=⎟
⎠
⎞

⎜
⎝
⎛ …

Taylor Approx for ex

• The exponential function can be expressed 
in terms of the infinite series:

k

∑
∞

=

=
0 !k

k
x

k
xe

What about an approximation 
formed from n terms?

∑
−

=

=
1

0 !

n

k

k
x

k
xe

How to code the exp function

• For each x, compute a series of terms for the 
summation:

∑
−1n kx Inefficient to calculate (k!)
∑
=

=
0 !k

x

k
xe

( )
and (xk) “from scratch” for 
each k.

How can we get the k-th term from the 
(k-1)term?



10

Matlab ExpTaylor

• Look at the code.  For each x, compute a series of 
terms corresponding to limits on the summation:

∑
−1n kx∑
=

=
0 !k

x

k
xe

demo exptaylordemo.m

Matlab ExpTaylor

• Precision generally increases with number 
of terms.  (Why does it decrease at first for 
some negative values of x?)g f )

• There is a limit beyond which it does not 
increase.  (Why?)

• Accuracy depends on the value of the 
argument.

Exercise 3, p 11 of text

• How many terms are needed to estimate cosh(1/2) 
with error less than 10-8?

422∞ k

...
!4!2

1
)!2(

)cosh(
42

0

2

+++==∑
∞

=

xx
k

xx
k

k

∑∑
∞

=

−

=

+=
Nk

kN

k

k

k
x

k
xx

)!2()!2(
)cosh(

21

0

2



11

Conditioning and Sensitivity

Condition number is characteristic of  the 
problem and not  the algorithm:

[ ] xfxfxf )(/)()ˆ([ ] { }xx
xxx

xfxfxf
Cond near  is ˆ   

/)ˆ(
)(/)()(

−
−

=

Large condition number indicates that solution 
is highly sensitive to small changes in input 
data.

Consider values of cos(x) for x 
close to zero and close to π/2

• cos(1.5708) = -3.673205 x 10-6

cos(1.5707) = 9.6326679 x 10-5

5
5

555

103.4
1037.6
2.27

5707.1)5707.15708.1(
10367.0)10367.010632.9( x

x
xxx

==
−

+
−

−−−

9
9

105
0.1

105
0001.0)0001.00000.0(

999999995.0)999999995.0000000000.1( −
−

==
−

− xx

•cos(0.0000) = 1.000000000
cos(0.0001) = 0.999999995

• Cos(x) is conditioned 
much better at x=0 
than at x = ± π/2



12

Following p.11

0)20()2)(1()(
or

xxxxp =−−−= "

01
19

19
20)( axaxaxxp ++++= "

Roots are known to be at x= 1, 2, 3, …, 20

Previous exercise revealed that 2nd formulation of 
algorithm can be unstable, because it is imprecise.

Assume stable, accurate algorithm

01
19

19
20)( axaxaxxp ++++= "

A physical problem is to be modeled by this 20th order 
polynomial, with the coefficients to be fit to experimental 
data.

If a19 = -210, largest real root = 20, and all roots are real 
integers..

If a19 = -210 + 2-22 (-209.999999762), largest root is 20.85 
and 10 of the roots are complex numbers!

In this case, the problem is ill-conditioned, even if the 
algorithm is stable.

Stability (or sensitivity) refers to 
algorithm

• A stable algorithm produces results that are 
relatively insensitive to perturbations made within 
the computation.

• Inaccuracy can arise from an unstable algorithm or 
from an ill-conditioned problem.

• Accuracy requires well conditioned problem and
stable algorithm.



13

Quadratic Formula

a
acbbx

2
42 −±−

=

What are some 
possible numerical 
problems with 
using thisusing this 
generally?

acbb
cx

4
2

2 −−
=

∓
Use one root from 
each formula.

x1x2= c/a

Error Metrics

supremum or L∞

( ) ( ) ( ) ( )kkNkbxa
xpxfxpxfpf −⇒−=−

=≤≤∞ ...1
maxmax

L1
( ) ( ) ( ) ( )∑∫

=

−⇒−=−
N

k
kk

b

a

xpxfdxxpxfpf
0

1

L2 ( ) ( ) ( ) ( )∑∫
=

−⇒−=−
N

k
kk

b

a

xpxfdxxpxfpf
0

22

2

note similarity to vector norms

Nonlinear Equations and Root 
Findingg

Chapter 2 of Turner
CSS455  Winter 2012



14

How would you find?

• A solution to the equation

)(*1012 )cos(*102 x
x

x =−

•Discuss with partner

•see demo testfn.m

Plot it first!

• Trial Equation
f(x) = x2 – (1/x) -
10*cos(x) =0

• Plot f(x) to learn of its• Plot f(x) to learn of its 
general behavior.

Plot it first!

• Another Trial 
Equation
xsin(x) = 1 0

5

10

• or
f(x) = xsin(x) - 1 =0

• Plot f(x) to learn of its 
general behavior.

-15 -10 -5 0 5 10 15
-15

-10

-5



15

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.8

-0.6

-0.4 roots lie in 
[1,1.5] and 
in [2.5,3.5]

Bisection method

• Find an interval 
containing a root 

• f(x) changes sign in 

• Following program is 
similar to one on pp 
24-5 of Turner

the interval
• Reduce the interval 

until its size satisfies 
the convergence 
criterion for the root

• Function xsin(x)-1 is 
in the demfun1 m-file 
routine.

• Bisection method on 
this function is in 
demobisect.m

%demobisect.m
clear
% search between a and b
a = input ('enter lower limit')
b = input ('enter upper limit')
tol = 1.E-6;
while ((b-a)>tol)

m = (a+b)/2;

Obvious refinements:
1.  Only one function 
evaluation per iteration.

2.  Lower bound on tol to 
make sure it is not set 
beneath machine 
accuracy.

3.  Use abs(a-b) 

m  (a b)/2;
if (sign(demfun1(a))==sign(demfun1(m)))

a = m;
else

b = m;
end
fprintf('\na= %f b= %f f(a)=%E 

f(b)=%E',a,b,demfun1(a),demfun1(b))
end

Run demobisect.m
with limits of 2.5 and 
3.0



16

a= 2.500000 b= 3.000000 f(a)=4.961804E-001 f(b)=-5.766400E-001
a= 2.750000 b= 3.000000 f(a)=4.956773E-002 f(b)=-5.766400E-001
a= 2.750000 b= 2.875000 f(a)=4.956773E-002 f(b)=-2.425928E-001
a= 2.750000 b= 2.812500 f(a)=4.956773E-002 f(b)=-9.104357E-002
a= 2.750000 b= 2.781250 f(a)=4.956773E-002 f(b)=-1.934543E-002
a= 2.765625 b= 2.781250 f(a)=1.546218E-002 f(b)=-1.934543E-002
a= 2.765625 b= 2.773438 f(a)=1.546218E-002 f(b)=-1.854219E-003
a= 2.769531 b= 2.773438 f(a)=6.825878E-003 f(b)=-1.854219E-003
a= 2 771484 b= 2 773438 f(a)=2 491298E 003 f(b)= 1 854219E 003a= 2.771484 b= 2.773438 f(a)=2.491298E-003 f(b)=-1.854219E-003
a= 2.772461 b= 2.773438 f(a)=3.199059E-004 f(b)=-1.854219E-003
a= 2.772461 b= 2.772949 f(a)=3.199059E-004 f(b)=-7.668150E-004
a= 2.772461 b= 2.772705 f(a)=3.199059E-004 f(b)=-2.233692E-004
a= 2.772583 b= 2.772705 f(a)=4.828971E-005 f(b)=-2.233692E-004

a= 2.772583 b= 2.772644 f(a)=4.828971E-005 f(b)=-8.753439E-005
a= 2.772583 b= 2.772614 f(a)=4.828971E-005 f(b)=-1.962101E-005
a= 2.772598 b= 2.772614 f(a)=1.433469E-005 f(b)=-1.962101E-005
a= 2.772598 b= 2.772606 f(a)=1.433469E-005 f(b)=-2.643078E-006
a= 2.772602 b= 2.772606 f(a)=5.845825E-006 f(b)=-2.643078E-006
a= 2.772604 b= 2.772606 f(a)=1.601379E-006 f(b)=-2.643078E-006
a= 2.772604 b= 2.772605 f(a)=1.601379E-006 f(b)=-5.208484E-007» 

•This process is linearly convergent.  It takes the same 
number of iterations to add n bits of precision 
regardless of the position within the sequence.  Why?

•Requires only the value of the function

•Does not make use of magnitudes.

3x3 - 5x2 - 4x +4 = 0

• Apply bisection method in [0,1]  (#1, p 27)
• Plot it first!  (plotfn.m)
• Use demobisect2 to solve• Use demobisect2 to solve.



17

Newton’s Method
•Can we use the knowledge of 
the slope at xc to help find the 
root?

Root at f(x) = 0

Newton’s Method
•The slope of the straight line 
is given by the derivative of 
f(x) at xc 
•f(x+) = f(xc) + f ′(xc) [x+-xc]    c c c
or
x+ = xc + [f(x+)- f(xc)] / f ′(xc) 

Root at f(x) = 0

Newton’s Method
•Alternatively, view as a Taylor’s expansion 
about xc

...)()()()()()(
2

c xfxxxfxxxfxf +′′−
+′−+= +

)(
)()(

)(
)(

)()(
)()()()(

...)(
2

)()()()(

c

c
c

c
c

c

ccc

cccc

xf
xfxfxx

xx
xf

xfxf
xfxxxfxf

xfxfxxxfxf

′
−

+=

−≈
′
−

′−+≈

+++

+
+

+
+

++

++



18

Newton’s Method
f(x+)=0 at a root
x+ = xc - f(xc) / f ′(xc)
In our case 
f(x) = x sin(x) -1
f ′(x) = sin(x) + xcos(x)

Newton’s Method

• Start at x = 3.5
• Converges in only 

Iterant: xn+1 = xn - f(xn) / f ′(xn)

five iterations
• quadratic 

convergence:
# of digits is 
doubled at each 
iteration.

xcurr= 2.886023  xprev = 3.500000
xcurr= 2.779536  xprev = 2.886023
xcurr= 2.772635  xprev = 2.779536
xcurr= 2.772605  xprev = 2.772635
xcurr= 2.772605  xprev = 2.772605» 

Newton’s Method

• Starting at x = 2.6, 
it converges to the 
same root

xcurr =
2.6000

xcurr= 2.798728  xprev = 2.600000
xcurr= 2.773026  xprev = 2.798728
xcurr= 2.772605 xprev = 2.773026

• starting at x = 2 it 
converges to a very 
different root

xcurr  2.772605  xprev  2.773026
xcurr= 2.772605  xprev = 2.772605»

xcurr= -8.630584  xprev = 2.000000
xcurr= -9.596971  xprev = -8.630584
xcurr= -9.322270  xprev = -9.596971
xcurr= -9.317247  xprev = -9.322270
xcurr= -9.317243  xprev = -9.317247
xcurr= -9.317243  xprev = -9.317243» 



19

Newton’s Method

• starting at x = 1.11, 
it converges to the 
nearby root.

•Convergence:
Quadratic, but not guaranteed.

•Requires derivative.

• xcurr =
• 1.1100
• xcurr= 1.114156  xprev = 1.110000
• xcurr= 1.114157  xprev = 1.114156» 

3x3 - 5x2 - 4x +4 = 0

• Apply Newton method near x = 0.7 (#1 on 
p. 41).  All you need is the function (above) 
and the derivative. demonewton2.m

Systems of Nonlinear Equations



20

systems of nonlinear equations

• Consider Example 12 on p. 46
– Two equations - two unknowns
– Behavior depends strongly on exact detail ofBehavior depends strongly on exact detail of 

the equations
• Apply some of the same methods applied to 

the scalar nonlinear case:
– e.g. Newton’s method

Make plausible

• System of two equations (f,g) in two 
variables (x,y)  similar to that of previous 
examplep

• Two Equations in two unknowns:

01),(
044),(

3
2

2
1212

2
2

2
1211

=−=
=−+=

xxxxf
xxxxf

)( 21212f

In vector notation:  f(x) =0



21

Newton’s Method
• As in the scalar case, convergence will be 

faster if it is started close to root.
• In the scalar case, the derivative of the 

function as well as the function itself wasfunction as well as the function itself was 
required at each iteration.

• In the multidimensional case, the Jacobian 
of the function plays this role. (nontrivial 
evaluation.)

write in vector notation
• x is the vector of x1 and x2

• f is the vector of  f1 and f2 evaluated with x
• Jf is the Jacobian of f

⎤⎡ 22 44

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

=⎥
⎦

⎤
⎢
⎣

⎡

−
−+

=

2

1

3
2

2
1

2
2

2
1 0

1
44

)(

x
x

xx
xx

x

xf

Partial derivatives:
differentiate the function f
with respect to one of its 
variables, treating the 
others as if they were 
constants.

J is a square matrix, 
each element of 
which is a partial 
derivative of one of 
the equations in the 
set.

2
2

1
1

2
2

2
121

2

8

044),(

xx
f

xx
f

xxxxf

=⎟
⎠
⎞⎜

⎝
⎛

∂
∂

=⎟
⎠
⎞⎜

⎝
⎛

∂
∂

=−+=



22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎛

∂∂
∂

∂
∂

∂

=

∂
∂

=

2
2

2
1

3
21

21

22

2

1

1

1

32
28

)()(

xxxx
xx

ff
x

f
x

f
x

f

j

i

J

xxJ ij

⎠⎝⎟
⎠

⎜
⎝ ∂∂ 2121

2

2

1

2 32 xxxx
x

f
x

f

xk+1 = xk - J-1f
(compare to scalar case)

xn+1 = xn - f(xn) / f ′(xn)

What is the definition of 
a matrix inverse?

• In practice, we would  avoid the inversion 
of J.  But, here it will be done.

• The equations are written out explicitly on 
p.45-46 for the 2x2 case. You need now!

• The iterative formula then becomese e ve o u e beco es
xk+1 = xk + sk, with     

• sk= - J-1f
• the two components of s are given by h and 

k in text) 
See demosysnewton.m

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
h

s

2 x 2 system by Newton
enter x   .4
enter y    1.8

4.000000000000000e-001    1.800000000000000e+000

4.045808966861598e-001    1.829261425167858e+000

4 041495644206274 001 1 829386038547648 +000

(x,y) (x1, x2)

Check4.041495644206274e-001    1.829386038547648e+000

4.041494570206883e-001    1.829385925812154e+000

4.041494570206443e-001    1.829385925812177e+000

EDU>>

Check 
convergence



23

Activity 3

Fixed Point Iteration (Activity)
• Solve the equation to yield the form 

x = g(x)
• x[n+1] = g(x[n]) (start with guess and iterate)
• F(x) = xsin(x) -1 =0 can be solved to yield:• F(x) = xsin(x) -1 =0, can be solved to yield:
• x[n+1] = 1/sin(x[n]), and iterate starting from initial 

guess x[0]

• Convergence depends upon nature of curve in 
vicinity of root.

• Will not converge to root near x = 2.77
|g’(x)| > 1  (see demoiter.m)

x1= 7.086167 x0= 3.000000 
x1= 1.389988 x0= 7.086167 
x1= 1.016571 x0= 1.389988 
x1= 1.176044 x0= 1.016571 
x1= 1.083316 x0= 1.176044 
x1= 1.131842 x0= 1.083316 
x1= 1.104733 x0= 1.131842 
x1= 1.119390 x0= 1.104733 

x1= 1.114199 x0= 1.114081 
x1= 1.114134 x0= 1.114199 
x1= 1.114170 x0= 1.114134 
x1= 1.114150 x0= 1.114170 
x1= 1.114161 x0= 1.114150 
x1= 1.114155 x0= 1.114161 
x1= 1.114158 x0= 1.114155 
x1= 1 114157 x0= 1 114158

x1= 1.111316 x0= 1.119390 
x1= 1.115719 x0= 1.111316 
x1= 1.113304 x0= 1.115719 
x1= 1.114625 x0= 1.113304 
x1= 1.113901 x0= 1.114625 
x1= 1.114297 x0= 1.113901 

x1= 1.114081 x0= 1.114297

x1= 1.114157 x0= 1.114158 

x1= 1.114157 x0= 1.114157



24

• In this case, the algorithm converges to the root near x = 
1.114, where   |g’(x)| < 1

• Linearly convergent in this case.
• Convergence depends strongly on form of iterant, which is 

not unique.

02)( 2 =−−= xxxf

12
2)(

21
2)(
2)(

)(

2

2

−
+

==

+=
+==
−==

x
xxgx

xx
xxgx

xxgx
f

The first one diverges 
for most starting 
guesses.

The other three 
converge at greatly 
differing rates.

3x3 - 5x2 - 4x +4 = 0

Apply fixed point iteration starting with
x0 = 0.7   Use the two iterants on p. 34.

4
531

3
4

3
4

3
5

23

2

xxx

xx
x

−
+=

−+= Finds root = 2

Finds root = 2/3

Square Root Example 
• A form of fixed point iteration.

]1[][

2

−=
=

nn xNx
Nx

2

( )( )
( )( )
( )( )]1[

]1[
2

1][

2
1

2
2

12

22

2

2

−
− +=

+=

+=

+=

=

n
nn

x
Nxx

x
Nxx

Nxx
Nxx

Nx The last iterant in the blue box 
is used after the procedure is 
scaled to require the square 
root of a number between 0.25 
and 1.



25

Square root Iteration
Any number A can be written in the form

1andintegeris
 where,4

1 ≤≤
×=

mn
mA n

1 andinteger  is 4 ≤≤ mn

Then the square root is given by: nmA 2×=

The general square root problem reduces to finding 
the square root of a number between 1/4 and 1.

Square Root Example 
• A form of fixed point iteration.

]1[][

2

−=
=

nn xNx
Nx

2

Convergence 
Rate?

( )( )
( )( )
( )( )]1[

]1[
2

1][

2
1

2
2

12

22

2

2

−
− +=

+=

+=

+=

=

n
nn

x
Nxx

x
Nxx

Nxx
Nxx

Nx x1= 1.141299 x0= 0.500000 
x1= 0.961125 x0= 1.141299 
x1= 0.944237 x0= 0.961125 
x1= 0.944086 x0= 0.944237 
x1= 0.944086 x0= 0.944086 
m= 0.891299 sqrt(m)= 0.944086 
EDU>>

On page 36: this is also the 
Newton iterant.

Secant Method
Secant line 
is approx to 
the 
derivative 
or tangent•Does not require derivative of 

function.
•Requires value of function at 
two previous iterates rather than 

)()(
)(

1

1
1

−

−
+ −

−
−=

kk

kk
kkk xfxf

xxxfxx

one. 
•Only one new function 
evaluation per iteration. 



26

xk=2.5
fxk = demfun1(xk);
xkp1=4
while (abs(xkp1-xk)>tol)

xkm1=xk;
fxkm1=fxk;
xk=xkp1;
fxk=demfun1(xk);
xkp1=xk-fxk*(xk-xkm1)/(fxk-fxkm1);
fprintf('\nxkp1= %f  xk = 
%f',xkp1,xk)

end

•Only one function evaluation per iteration.

Secant Method
f(x) = x sin(x) -1

• Starting at  points x = 
2.5 and 3.5, converges 
in 6 iterations.

xkp1= 2.682157  xk = 3.500000
xkp1= 2.746235  xk = 2.682157
xkp1= 2.774299  xk = 2.746235
xkp1= 2.772575  xk = 2.774299

• convergence is still 
somewhat superlinear, 
although slower than 
Newton’s method

xkp1= 2.772605  xk = 2.772575
xkp1= 2.772605  xk = 2.772605

Secant Method

• Starting at  points x = 
1.0 and 2.0 , 
converges in 4 
i i

xkp1= 1.162240  xk = 1.000000
xkp1= 1.114254  xk = 1.162240
xkp1= 1.114157  xk = 1.114254
xkp1= 1.114157  xk = 1.114157

iterations.
• convergence is still 

somewhat superlinear, 
although slower than 
Newton’s method



27

3x3 - 5x2 - 4x +4 = 0

Apply Secant method near x = 0.7 (#1 on p. 
44)

Matlab fzero function.
• fzero utilizes a hybrid method, starting with 

bisection, switching to secant and to parabolic 
interpolation as appropriate.

• options = optimset('Display','iter','TolX',tol)

z = fzero(@demfun1,x,options)
– x scalar: searches for root near initial x
– x vector: guarantees a root between x(1) and x(2) if 

funname has different signs at the two x-values.
– TolX regulates convergence criterion
– “iter” produces diagnostic output

fzero Output



28

Matrix Computations

CSS455 Winter 2011

Block Structure of Matrices

• Overall matrix can be viewed as constructed 
of rows and columns of smaller matrices or 
blocks.

• Care must be taken to preserve correct 
dimensions.

• Matlab will generally check dimensions 

Block Structure



29

Block Structure

Block Structure

Block Structure



30

y = Ax
(Matrix-Vector Product)

• Each element of the product vector y is the 
result of an inner product (dot product) 
between a row of A (a row vector) and the ( )
column vector x

k

n

k
iki xay ∑

=

=
1

Work Group Project

• Given the matrix-vector product
y = Ax

where y is an (r × 1) column vector, 
i ( 1) d A i ( ) i i

k

n

k
iki xay ∑

=

=
1

x is an (n × 1)  and  A is an (r × n) matrix, write 
pseudo code for a suitable algorithm.

• Estimate in terms of r and n the number of floating 
point operations (multiplies, additions and 
subtractions) in this algorithm.

With Partner

• Part I of Activity 4  - 5 minutes
• Describe your algorithm at board



31

The element y1 is formed by the scalar 
product of row-1 of A with column x.

A y=Ax

x

r x n

n x 1

r x 1

∑
=

=+++=
n

i
ii

1
1n1n2121111 xaxaxaxay …

A
y=Ax

The element y2 is formed by the scalar 
product of row-2 of A with column x.

x

∑
=

=+++=
n

i
ii

1
2n2n2221212 xaxaxaxay …

y=Ax

r x n

n x 1

r x 1

Consider the elements of y

nn

xaxaxa
xaxaxa

"
"

++
++ 1212111

⎟
⎟
⎞

⎜
⎜
⎛

y
y1

nmnmm

nn

xaxaxa

xaxaxa

"++

++

2211

2222121

...
⎟⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜

⎝

=

my

y
#
2



32

Consider the elements of y

xaxaxa "
"

++
++ n1n212111 xaxaxa

⎟
⎟
⎞

⎜
⎜
⎛

y
y1

nmnmm

nn

xaxaxa

xaxaxa

"++

++

2211

2222121

...
⎟⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜

⎝

=

my

y
#
2

Row Ordered Algorithm
%compute the Ax product
y = zeros(m,1);
for i = 1:m

y(i) = 0;
for j = 1:nj

y(i) = y(i) + A(i,j)*x(j);
end

end
%Repeat with  vector notation
y2 = zeros(m,1);
for i =1:m

y2(i) = A(i,:)*x;
end

Matlab uses inner 
product in last 
loop.

Consider the elements of y

nn

xaxaxa
xaxaxa

"
"

++
++ 1212111

⎟
⎟
⎞

⎜
⎜
⎛

y
y1

nmnmm

nn

xaxaxa

xaxaxa

"++

++

2211

2222121

...
⎟⎟
⎟
⎟

⎠
⎜⎜
⎜
⎜

⎝

=

my

y
#
2



33

Consider the elements of y

nn

xaxa
xaxa

"
"

++
++ 12121

2

11

xa
xa Notice that there 

is a natural 
column oriented 

nmnm

nn

xaxa

xaxa

"++

++

22

22221

...

1m1

21

xa

xa structure as well 
as the row 
structure.  The 
code could be 
organized by 
column.

Column Oriented Approach 
- reverse the loop structure

In the inner 
loop x(j) is 
essentially a 
scalar constant

This can be thought of 
as  “scalar a times 
vector x plus vector y” 
or “axpy”.  If in single 
precision, called 
“saxpy”.

who cares?

• In matlab, the compact notation makes this 
h i l h b i

%Repeat with matrix notation
y3 = A*x;

choice less than obvious:
• The results and the number of floating point 

operations are the same in the column and 
row oriented approaches.

• How could the choice be important?



34

Order of Data Storage

• If matrix A is stored row-wise:

""" 312222111211 aaaaaaa nn

•The dot product approach might be efficient.

•If the data is stored column-wise, the saxpy approach 
might be more efficient:

""" 132221212111 aaaaaaa mm

With Partner

• Part  II of Acivity 4
• Go to board with it  

Matrix vector product with upper triagular matrix

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

4

3

2

1

4

3

2

1

464544

36353433

2625242322

161514131211

0000
000

00
0

y
y
y
y
y

x
x
x
x
x

aa
aaa
aaaa
aaaaa
aaaaaa

Row oriented (dot 
product)

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

4

3

2

1

4

3

2

1

464544

36353433

2625242322

161514131211

0000
000

00
0

y
y
y
y
y

x
x
x
x
x

aa
aaa
aaaa
aaaaa
aaaaaa

n

⎟
⎟
⎠

⎜
⎜
⎝

⎟
⎟
⎠

⎜
⎜
⎝
⎟
⎟
⎠

⎜
⎜
⎝ 6

5

6

5

66

5655

00000
0000

y
y

x
x

a
aa

a(j,j:n)*x(j:n) for 
each j (where * 
is dot product in 
Matlab)

⎟
⎟
⎠

⎜
⎜
⎝

⎟
⎟
⎠

⎜
⎜
⎝
⎟
⎟
⎠

⎜
⎜
⎝ 6

5

6

5

66

5655

00000
0000

y
y

x
x

a
aa

nnnn

n

ji
ijinjnjjjjjjj

n

i
iinn

n

i
iinn

xay

xaxaxaxay

xaxaxaxay

xaxaxaxay

=

=+++=

=+++=

=+++=

∑

∑

∑

=
++

=

=

...

...

...

11,

2
223232222

1
112121111



35

Upper triangular - check code

This seems to give the 
correct answer.  

Matrix vector product with upper triangular matrix

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

5

4

3

2

1

5

4

3

2

1

5655

464544

36353433

2625242322

161514131211

0000
000

00
0

y
y
y
y
y

x
x
x
x
x

aa
aaa
aaaa
aaaaa
aaaaaa

61611 xayy +=

Column 
oriented

⎟
⎟
⎠

⎜
⎜
⎝

⎟
⎟
⎠

⎜
⎜
⎝
⎟
⎟
⎠

⎜
⎜
⎝ 6

5

6

5

66

5655

00000
0000

y
y

x
x

a
aa

1
1111

Col
xay =

2
22222

21211

Col
xayy

xayy
+=
+=

3
3333

32322

31311

Col
xay

xayy
xayy

=
+=
+=

6
6666

65655

64644

63633

62622

Col
xay

xayy
xayy
xayy
xayy

=
+=
+=
+=
+=

y(1:j)=y(1:j) + a(1:j,j)*x(j)
for each j

Upper triangular - check code

This seems to give the 
correct answer.  



36

Matrix-Matrix products C= AB

• Each element of product is an inner (dot) product 

∑
=

=
r

i
ijkikj BAC

1

between a row of A and one column vector.
• Each column of the product is a matrix vector 

product between A and one column of B.
• The entire C matrix is just a collection of matrix-

vector products, and will have the same range of 
algorithms.

The element C21 is formed by the scalar 
product of row-2 of A with column-1 of B.

A B C=AB

∑
=

=+++=
r

i
ii

1
12n12n2122112121 babababac …

m x r

r x n

m x n

With Partner

• Activity 4, Part III
• Results



37

Work Group Project

• Given the matrix-matrix product
C=AB

where A is an (m × r) matrix, B is an (r × n) 
i d C i ( ) i i d

∑
=

=
r

i
ijkikj BAC

1

matrix and C is an (m × n) matrix  write pseudo 
code for a suitable algorithm.

• Estimate in terms of m, n, and r the number of 
floating point operations (multiplies, additions and 
subtractions) in this algorithm.

C = AB in full triple loop notation

This is formally an n3 operation.

The inner loop is a vector inner product.

Run the inner loop like an inner 
vector product.



38

Reorder the loop structure and 
run like a saxpy operation.

Reorder the loop structure to make it 
look like a set of matrix-vector 

products. (matlab operator)

Outer Product

• Column vector times a row vector is an 
outer product:  (m x 1)(1 x n) = (m x n).

• The outer product produces a matrixThe outer product produces a matrix.
• Reorder the loops to present the matrix 

product as a sum of outer products.



39

Reorder loops 

•k-loop looks like column vector times scalar (saxpy)

•jk loops look like column vector times a row vector 
(outer product)

•ijk loops look like sum of outer products, each of 
which is (m x n).

Outer Product Formulation

Windows Matlab timings
(running MatBench from text)n     Dot     Saxpy MatVec Outer    Direct

------------------------------------------------
10   0.0180   0.0003   0.0003   0.0022   0.0001 
50   0.0056   0.0022   0.0002   0.0008   0.0001 
100   0.0237   0.0103   0.0012   0.0052   0.0005 
200   0.1166   0.0557   0.0066   0.0369   0.0039 
400   0.8740   0.3439   0.0896   1.2878   0.0320 
800   8.0158   2.5688   1.1946  12.6034   0.2466 
>>

MatVec and Direct clearly fastest for all lengths.  
Both of them use matlab operator for most time 
consuming steps.

These are elapsed times are from tic/toc in wall-
clock seconds.

>>



40

Linux Matlab (#17)
(running MatBench from text)n     Dot     Saxpy MatVec Outer    Direct

------------------------------------------------
10   0.0342   0.0020   0.0026   0.0017   0.0000 
50   0.0123   0.0047   0.0004   0.0012   0.0005 
100   0.0553   0.0219   0.0019   0.0156   0.0003 
200   0.2563   0.1084   0.0134   0.1606   0.0050 
400   1.4821   0.7356   0.2074   0.9561   0.0157 
800 13 4897 4 9986 1 7941 7 3177 0 1123

Some times are slower, others are faster..  

These are elapsed times in seconds.

800  13.4897   4.9986   1.7941   7.3177   0.1123  
>> 

Comparison
n     Dot     Saxpy MatVec Outer    Direct

------------------------------------------------
10   0.0180   0.0003   0.0003   0.0022   0.0001 
50   0.0056   0.0022   0.0002   0.0008   0.0001 
100   0.0237   0.0103   0.0012   0.0052   0.0005 
200   0.1166   0.0557   0.0066   0.0369   0.0039 
400   0.8740   0.3439   0.0896   1.2878   0.0320 

n     Dot     Saxpy MatVec Outer    Direct
------------------------------------------------
10   0.0180   0.0003   0.0003   0.0022   0.0001 
50   0.0056   0.0022   0.0002   0.0008   0.0001 
100   0.0237   0.0103   0.0012   0.0052   0.0005 
200   0.1166   0.0557   0.0066   0.0369   0.0039 
400   0.8740   0.3439   0.0896   1.2878   0.0320 
800 8 0158 2 5688 1 1946 12 6034 0 2466800   8.0158   2.5688   1.1946  12.6034   0.2466 
>>
800   8.0158   2.5688   1.1946  12.6034   0.2466 
>> n     Dot     Saxpy MatVec Outer    Direct

------------------------------------------------
10   0.0342   0.0020   0.0026   0.0017   0.0000 
50   0.0123   0.0047   0.0004   0.0012   0.0005 
100   0.0553   0.0219   0.0019   0.0156   0.0003 
200   0.2563   0.1084   0.0134   0.1606   0.0050 
400   1.4821   0.7356   0.2074   0.9561   0.0157 
800  13.4897   4.9986   1.7941   7.3177   0.1123  
>> 

Activity 4 – Part IV


