Accuracy/Precision/General Error Concepts

CSS 455, Winter 2012 Scientific Computing

Errata: chapter 1 of turner

- P3, 2^{nd} equation: last term should be $a_{-m}\beta^m$ rather than $a_{-m}\beta^m$
- P3, Eq 1.3, last term should be $b_N \beta^N$ rather than $b_N \beta^N$
- P11, Exercise 3. third term in cosh(x) should be (x⁴/4!) rather that (x⁴/41)
- P282, Section 1.4, last answer (1.67618) is incorrect.

Precision

- **Precision** refers to the number of significant figures or to the repeatability of the measurement. *Precision may be improved by larger data sets.*
- (For example, 6.022x10²³ is a <u>more precise</u> measurement of Avogadro's Number than is 6.02x10²³.)

Accuracy

- Accuracy is an indication of how close the measurement is to the true value. It may include systematic instrument error.
- For example, 6.0 x10²³ is a more accurate value of Avogadro's Number than is 5.885646x10²³.

Computational Error

• Algorithmic Error: **Truncation or discretization**. Some terms may be omitted. For example, Taylor Series for a function:

 $f(x+\delta) = f(x) + f'(x)(\delta) + \frac{f''(x)}{2!}(\delta^2) + \frac{f'''(x)}{3!}(\delta^3) + \cdots$

We may truncate after just a few terms for small $\boldsymbol{\delta}$

Computational Error

• Data representation **Rounding.** Computer representation of real numbers is generally inexact.

- (The number 1/3 will be rounded to 0.33333333 in some floating point representations.)
- Error Propogation. Calculations are often done in steps. The later steps depend upon the results (and errors) of the earlier ones.

Error Analysis

- Absolute: approximate true. - Units are the same as the measured values.
- Relative: Absolute error divided by true value.

approx – true true

Unitless, expressed as fraction or percent.

Floating-Point Numbers

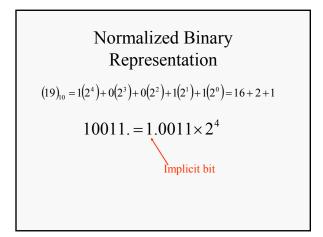
- Many scientific calculations are done with approximately 64 bits used for floating point representation: real*8, double precision (most workstations)
- The division of these bits between exponent and mantissa fields varies from machine to machine. The precision is about 14-16 *decimal* digits and the exponent range is about $10^{\pm 200} 10^{\pm 500}$

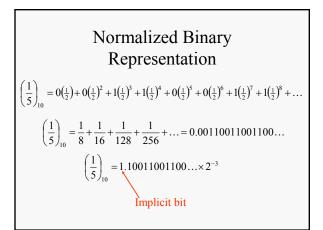
Double Precision is default on Matlab. Single precision and integer representation must be selected.

Floating Point Representation

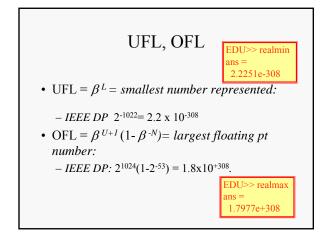
$$x = \pm b_0 \cdot b_1 b_2 b_3 \dots b_N \times \beta^E$$
, with $L \le E \le U$
• β is the base (β =2 in binary system)
• b_0 is implicit digit (defined by convention) (b_0 =1)
• $b_1 b_2 \dots b_N$ is the mantissa field of *N*-digits
•*E* is the exponent field

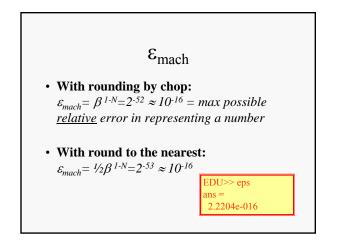
$$x = \pm \left\{ b_0 + \frac{b_1}{\beta} + \frac{b_2}{\beta^2} + \frac{b_3}{\beta^3} + \dots + \frac{b_N}{\beta^N} \right\} \beta^E$$





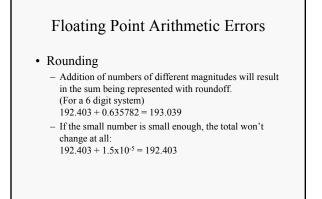
	S	yste	ems	
System	β	N	L	U
IEEE SP	2	24	-126	127
IEEE DP	2	53	-1,022	1,023
Cray	2	48	16,383	16,384
HP Calc	10	12	-499	499





Notice...

- · that UFL and OFL represent absolute magnitudes.
- that UFL's can be often set to zero.
- that ε_{mach} represents relative precision. (rounding to nearest decreases ε_{mach} by 1/2 compared to chopping.)



• Rounding

- It makes a difference which way the series is summed (not commutative). (sumlovern demo Matlab)

$$\sum_{n=1}^{\text{nlim}} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n\text{lim}}$$
$$= \frac{1}{n\text{lim}} + \dots + \frac{1}{3} + \frac{1}{2} + 1$$

Cancellation

• Subtraction can result in a loss of precision <u>even if all numbers are representable.</u> (this can be a very serious problem.)

 $1.55456 - 1.55435 = 0.00021 = 2.1 \times 10^{-4}$ (even with 6 digit representation, our result has <u>only 2 digits of precision.)</u>

demo showing order of subtraction (canc-err) $\mathbf{a} = (1\frac{1}{3} \ 2 \ 3 \ 4 \ \cdots)$ $\mathbf{b} = (-1 \ -2 \ -3 \ -4 \ \cdots)$

• Rounding

 Algorithms matter! Compare (x-1)⁶ with the expanded polynomial.

 $f(x) = (x-1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$

What are the roots of this equation?

That is, for what *x*-values does f(x) = 0?

Floating Point Arithmetic Errors

• Rounding

 Algorithms matter! Compare (x-1)⁶ with the expanded polynomial.

 $f(x) = (x-1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$

Matlab Zoomdemo.m, zoomdemocanc.m Each subplot examines a region closer to the roots at x=1. Notice the difference between the two algorithms. Group discussion: why is this happening?

Floating Point Arithmetic Errors

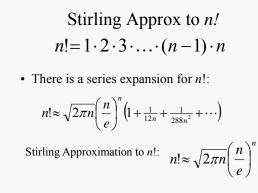
• Rounding

 Algorithms matter! Compare (x-1)⁶ with the expanded polynomial.

$$f(x) = (x-1)^6 = x^6 - 6x^5 + 15x^4 - 20x^3 + 15x^2 - 6x + 1$$

Matlab Zoomderivatives.m, zoomderivativescanc.m What about using the derivatives instead? What does the derivative do at a root?

Activity 2



Truncation Error Stirling Approx

- Run Matlab Stirlingdemo.m
- Note that relative error is large, but becomes smaller as *n* increases. This error is due to *truncation* of the series.
- Addition of the second term (1+1/12n...) reduces relative error by about two orders of magnitude.
- Return to Stirlingdemo.m

• Abs and rel error of representing 1/5 in a 12-bit mantissa binary system.

$$\left(\frac{1}{5}\right)_{10} = 1.100110011001... \times 2^{-3}$$

Taylor Approx for
$$e^x$$

• The exponential function can be expressed in terms of the infinite series:

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

What about an approximation $e^x = \sum_{k=0}^{n-1} \frac{x^k}{k!}$

How to code the exp function

• For each *x*, compute a series of terms for the summation

$$e^x = \sum_{k=0}^{n-1} \frac{x^k}{k!}$$

Inefficient to calculate (k!)and (x^k) "from scratch" for each k.

How can we get the k-th term from the (k-1)term?

Matlab ExpTaylor

• Look at the code. For each *x*, compute a series of terms corresponding to limits on the summation:

$$e^x = \sum_{k=0}^{n-1} \frac{x^k}{k!}$$

demo exptaylordemo.m

Matlab ExpTaylor

- Precision generally increases with number of terms. (*Why does it decrease at first for some negative values of x?*)
- There is a limit beyond which it does not increase. *(Why?)*
- Accuracy depends on the value of the argument.

Exercise 3, p 11 of text

• How many terms are needed to estimate $\cosh(1/2)$ with error less than 10^{-8} ?

$$\cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots$$
$$\cosh(x) = \sum_{k=0}^{N-1} \frac{x^{2k}}{(2k)!} + \sum_{k=N}^{\infty} \frac{x^{2k}}{(2k)!}$$

Conditioning and Sensitivity

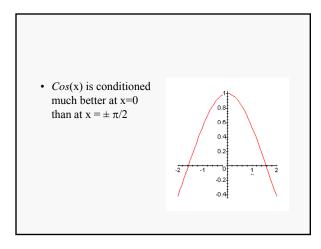
Condition number is characteristic of the problem and not the algorithm:

_

$$Cond = \frac{\left| \left[f(\hat{x}) - f(x) \right] / f(x) \right|}{\left| (\hat{x} - x) / x \right|} \quad \{\hat{x} \text{ is near } x\}$$

Large condition number indicates that solution is highly sensitive volume and changes in input data. close to zero and close to $\pi/2$

$\frac{(9.632x10^{-5} + 0.367x10^{-5})/0.367x10^{-5}}{(1.5708 - 1.5707)/1.5707} = \frac{27.2}{6.37x10^{-5}} = 4.3x10^{5}$ • $cos(0.0000) = 1.000000000$ cos(0.0001) = 0.999999995 $(1.00000000 - 0.999999995)/0.999999995 = 5x10^{-9}$	• $cos(1.5708) = -3.673205 \times 10^{-6}$ $cos(1.5707) = 9.6326679 \times 10^{-5}$
cos(0.0001) = 0.999999995	$\frac{(9.632x10^{-5} + 0.367x10^{-5})/(0.367x10^{-5})}{(1.5708 - 1.5707)/(1.5707)} = \frac{27.2}{6.37x10^{-5}} = 4.3x10^{5}$
$\frac{(0.0000 - 0.0001)/0.0001}{(0.0000 - 0.0001)/0.0001} = \frac{-0.0001}{-0.0001} = 5x10^{-1}$	$\frac{(1.000000000 - 0.999999995)/(0.9999999955)}{5 = 5x10^{-9}} = 5x10^{-9}$



Following p.11

$$p(x) = (x-1)(x-2)\cdots(x-20) = 0$$

or

$$p(x) = x^{20} + a_{19}x^{19} + \dots + a_1x + a_0$$

Roots are known to be at x=1, 2, 3, ..., 20

Previous exercise revealed that 2nd formulation of algorithm can be unstable, because it is imprecise.

Assume stable, accurate algorithm

$$p(x) = x^{20} + a_{19}x^{19} + \dots + a_1x + a_0$$

A physical problem is to be modeled by this $20^{\rm th}$ order polynomial, with the coefficients to be fit to experimental data.

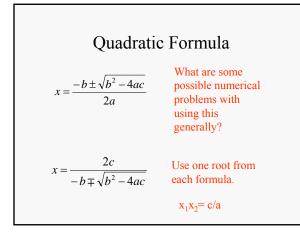
If $a_{19} = -210$, largest real root = 20, and all roots are real integers.

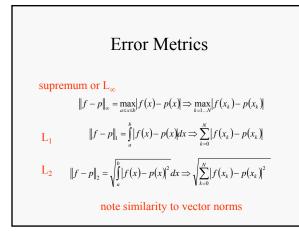
If $a_{19} = -210 + 2^{-22}$ (-209.999999762), largest root is 20.85 and 10 of the roots are complex numbers!

In this case, the problem is ill-conditioned, even if the algorithm is stable.

Stability (or sensitivity) refers to algorithm

- A stable algorithm produces results that are relatively insensitive to perturbations made within the computation.
- Inaccuracy can arise from an unstable algorithm or from an ill-conditioned problem.
- Accuracy requires well conditioned problem **and** stable algorithm.





Nonlinear Equations and Root Finding

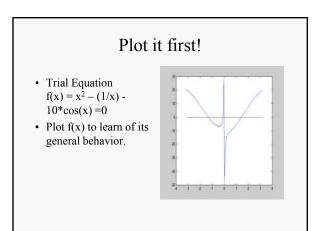
> Chapter 2 of Turner CSS455 Winter 2012

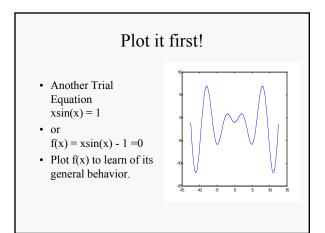
How would you find?

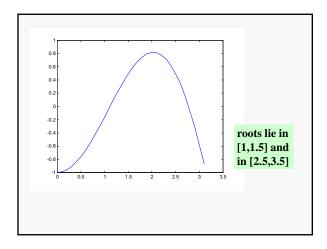
• A solution to the equation

$$x^2 - \frac{1}{x} = 10 * \cos(x)$$

•Discuss with partner •*see demo testfn.m*

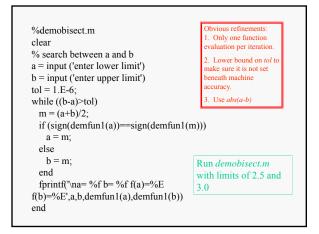






Bisection method

- Find an interval containing a root
- f(x) changes sign in the interval
- Reduce the interval until its size satisfies the convergence criterion for the root
- Following program is similar to one on pp 24-5 of Turner
- Function xsin(x)-1 is in the demfun1 m-file routine.
- Bisection method on this function is in *demobisect.m*



a= 2.500000 b= 3.000000 f(a)=4.961804E-001 f(b)=-5.766400E-001
a= 2.750000 b= 3.000000 f(a)=4.956773E-002 f(b)=-5.766400E-001
a= 2.750000 b= 2.875000 f(a)=4.956773E-002 f(b)=-2.425928E-001
a= 2.750000 b= 2.812500 f(a)=4.956773E-002 f(b)=-9.104357E-002
a= 2.750000 b= 2.781250 f(a)=4.956773E-002 f(b)=-1.934543E-002
a= 2.765625 b= 2.781250 f(a)=1.546218E-002 f(b)=-1.934543E-002
a= 2.765625 b= 2.773438 f(a)=1.546218E-002 f(b)=-1.854219E-003
a= 2.769531 b= 2.773438 f(a)=6.825878E-003 f(b)=-1.854219E-003
a= 2.771484 b= 2.773438 f(a)=2.491298E-003 f(b)=-1.854219E-003
a= 2.772461 b= 2.773438 f(a)=3.199059E-004 f(b)=-1.854219E-003
a= 2.772461 b= 2.772949 f(a)=3.199059E-004 f(b)=-7.668150E-004
a= 2.772461 b= 2.772705 f(a)=3.199059E-004 f(b)=-2.233692E-004
a= 2.772583 b= 2.772705 f(a)=4.828971E-005 f(b)=-2.233692E-004

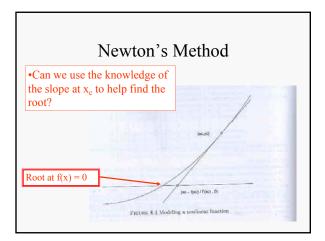
•This process is linearly convergent. It takes the same number of iterations to add *n* bits of precision regardless of the position within the sequence. *Why*?

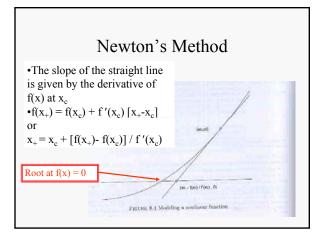
•Requires only the value of the function

•Does not make use of magnitudes.

$3x^3 - 5x^2 - 4x + 4 = 0$

- Apply bisection method in [0,1] (#1, p 27)
- Plot it first! (plotfn.m)
- Use *demobisect2* to solve.





Newton's Method

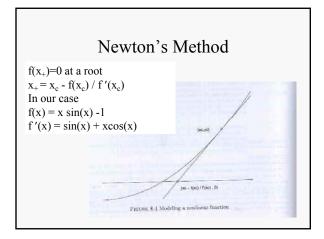
•Alternatively, view as a Taylor's expansion about \mathbf{x}_{c}

$$f(x_{+}) = f(x_{c}) + (x_{+} - x_{c})f'(x_{c}) + \frac{(x_{+} - x_{c})^{2}}{2}f''(x_{c}) + \dots$$

$$f(x_{+}) \approx f(x_{c}) + (x_{+} - x_{c})f'(x_{c})$$

$$\frac{f(x_{+}) - f(x_{c})}{f'(x_{c})} \approx (x_{+} - x_{c})$$

$$x_{+} = x_{c} + \frac{f(x_{+}) - f(x_{c})}{f'(x_{c})}$$

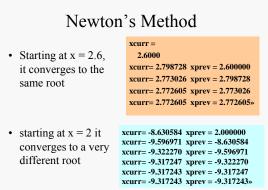


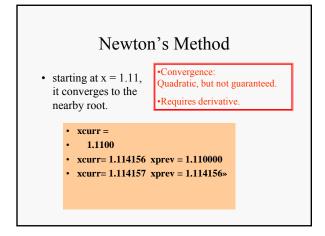
Newton's Method

Iterant: $x_{n+1} = x_n - f(x_n) / f'(x_n)$

- Start at x = 3.5
- Converges in only five iterations

• quadratic convergence: # of digits is doubled at each iteration. xcurr=2.886023 xprev = 3.500000 xcurr=2.779536 xprev = 2.886023 xcurr=2.772635 xprev = 2.779536 xcurr= 2.772605 xprev = 2.772635 xcurr= 2.772605 xprev = 2.772605»





$$3x^3 - 5x^2 - 4x + 4 = 0$$

• Apply Newton method near x = 0.7 (#1 on p. 41). All you need is the function (above) and the derivative. *demonewton2.m*

Systems of Nonlinear Equations

systems of nonlinear equations

- Consider Example 12 on p. 46
 - Two equations two unknowns
 - Behavior depends strongly on exact detail of the equations
- Apply some of the same methods applied to the scalar nonlinear case:
 - e.g. Newton's method

Make plausible

• System of two equations (f,g) in two variables (x,y) similar to that of previous example

• Two Equations in two unknowns:

$$f_1(x_1, x_2) = 4x_1^2 + x_2^2 - 4 = 0$$

$$f_2(x_1, x_2) = x_1^2 x_2^3 - 1 = 0$$

In vector notation: f(x) = 0

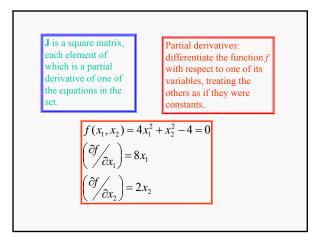
Newton's Method

- As in the scalar case, convergence will be faster if it is started close to root.
- In the scalar case, the derivative of the function as well as the function itself was required at each iteration.
- In the multidimensional case, the Jacobian of the function plays this role. (nontrivial evaluation.)

write in vector notation

- **x** is the vector of x_1 and x_2
- **f** is the vector of f_1 and f_2 evaluated with **x**
- J_f is the Jacobian of f

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} 4x_1^2 + x_2^2 - 4\\ x_1^2 x_2^3 - 1 \end{bmatrix} = 0$$
$$\mathbf{x} = \begin{pmatrix} x_1\\ x_2 \end{pmatrix}$$

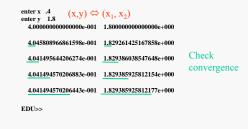


$$\mathbf{J}(\mathbf{x})_{ij} = \frac{\partial f_i(\mathbf{x})}{\partial x_j}$$
$$\mathbf{J} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 8x_1 & 2x_2 \\ 2x_1x_2^3 & 3x_1^2x_2^2 \end{pmatrix}$$
$$\mathbf{x}_{k+1} = \mathbf{x}_k - \mathbf{J}^{-1}\mathbf{f}$$
$$(compare to scalar case)$$
$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{f}(\mathbf{x}_n) / \mathbf{f}'(\mathbf{x}_n)$$

- In practice, we would avoid the inversion of **J**. But, here it will be done.
- The equations are written out explicitly on p.45-46 for the 2x2 case. *You need now!*
- The iterative formula then becomes $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{s}_k$, with
- $s_k = J^{-1}f$
- the two components of *s* are given by *h* and k in text $\mathbf{s} = \begin{pmatrix} h \\ k \end{pmatrix}$

See demosysnewton.m

2 x 2 system by Newton



Activity 3

Fixed Point Iteration (Activity)

- Solve the equation to yield the form x = g(x)
- $x^{[n+1]} = g(x^{[n]})$ (start with guess and iterate)
- $F(x) = x\sin(x) 1 = 0$, can be solved to yield:
- $x^{[n+1]} = 1/sin(x^{[n]}),$ and iterate starting from initial guess $x^{[0]}$
- Convergence depends upon nature of curve in vicinity of root.
- Will not converge to root near x = 2.77 |g'(x)| > 1 (see demoiter.m)

x1= 7.086167 x0= 3.000000 x1= 1.114199 x0= 1.114081 x1= 1.389988 x0= 7.086167 x1= 1.114134 x0= 1.114199 x1= 1.016571 x0= 1.389988 x1= 1.114170 x0= 1.114134 x1= 1.176044 x0= 1.016571 x1= 1.114150 x0= 1.114170 x1= 1.083316 x0= 1.176044 x1= 1.114161 x0= 1.114150 x1= 1.131842 x0= 1.083316 x1= 1.114155 x0= 1.114161 x1= 1.104733 x0= 1.131842 x1= 1.114158 x0= 1.114155 x1= 1.119390 x0= 1.104733 x1= 1.114157 x0= 1.114158 x1= 1.111316 x0= 1.119390 x1= 1.114157 x0= 1.114157 x1= 1.115719 x0= 1.111316 x1= 1.113304 x0= 1.115719 x1= 1.114625 x0= 1.113304 x1= 1.113901 x0= 1.114625 x1= 1.114297 x0= 1.113901 x1= 1.114081 x0= 1.114297

- In this case, the algorithm converges to the root near x=1.114, where $\ |g'(x)| \leq 1$

- Linearly convergent in this case.
- · Convergence depends strongly on form of iterant, which is not unique.

$$f(x) = x^{2} - x - 2 = 0$$

$$x = g(x) = x^{2} - 2$$

$$x = g(x) = \sqrt{x + 2}$$

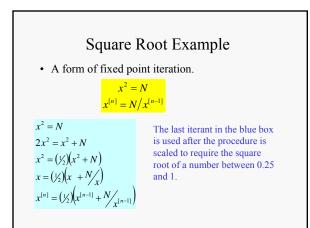
$$x = 1 + 2/x$$

$$x = g(x) = \frac{x^{2} + 2}{2x - 1}$$
The first one difference of the first one differe

diverges ting ee reatly

$$3x^{3} - 5x^{2} - 4x + 4 = 0$$
Apply fixed point iteration starting with
 $x_{0} = 0.7$ Use the two iterants on p. 34.

$$x = \frac{5}{3} + \frac{4}{3x} - \frac{4}{3x^{2}}$$
Finds root = 2
 $x = 1 + \frac{3x^{3} - 5x^{2}}{4}$
Finds root = 2/3



Square root Iteration

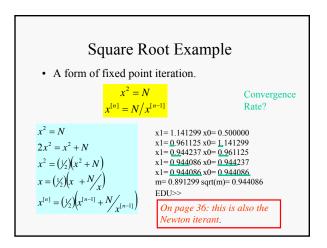
Any number A can be written in the form

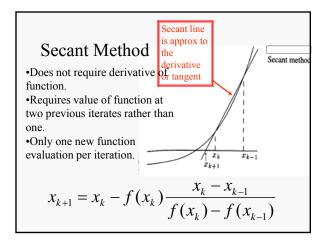
 $A = m \times 4^n$, where

n is integer and $\frac{1}{4} \le m \le 1$

Then the square root is given by: $\sqrt{A} = \sqrt{m} \times 2^n$

The general square root problem reduces to finding the square root of a number between 1/4 and 1.





Secant Method $f(x) = x \sin(x) - 1$

- Starting at points x = 2.5 and 3.5, converges in 6 iterations.
- convergence is still somewhat superlinear, although slower than Newton's method

xkp1= 2.682157 xk = 3.500000 xkp1= 2.746235 xk = 2.682157 xkp1= 2.774299 xk = 2.746235 xkp1= 2.772575 xk = 2.774299 xkp1= 2.772605 xk = 2.772575 xkp1= 2.772605 xk = 2.772605

Secant Method

• Starting at points x = 1.0 and 2.0, converges in 4 iterations.

xkp1= 1.162240 xk = 1.000000 xkp1= 1.114254 xk = 1.162240 xkp1= 1.114157 xk = 1.114254 xkp1= 1.114157 xk = 1.114157

• convergence is still somewhat superlinear, although slower than Newton's method

$$3x^3 - 5x^2 - 4x + 4 = 0$$

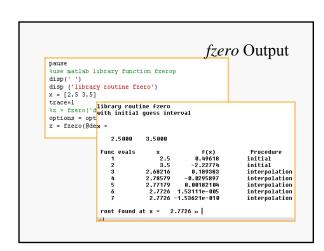
Apply Secant method near x = 0.7 (#1 on p. 44)

Matlab *fzero* function.

- *fzero* utilizes a hybrid method, starting with bisection, switching to secant and to parabolic interpolation as appropriate.
- options = optimset('Display','iter','TolX',tol)

z = fzero(@demfun1,x,options)

- x scalar: searches for root near initial x
- **x** vector: guarantees a root between x(1) and x(2) if
- *funname* has different signs at the two x-values. - *TolX* regulates convergence criterion
- *Totx* regulates convergence entering
 "iter" produces diagnostic output

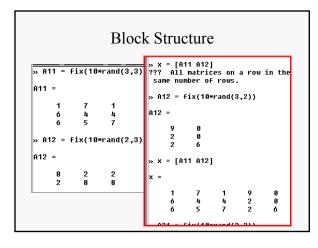


Matrix Computations

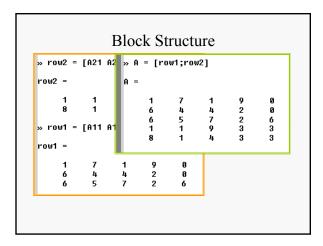
CSS455 Winter 2011

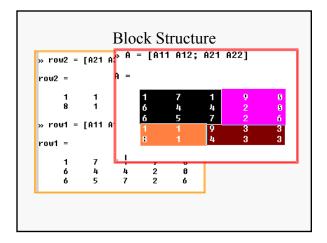
Block Structure of Matrices

- Overall matrix can be viewed as constructed of rows and columns of smaller matrices or blocks.
- Care must be taken to preserve correct dimensions.
- · Matlab will generally check dimensions



» A21 = f	Fix(10	*rand(» row2	? = [A	21 A2	2]		
A21 =			row2 =					
			1	. ·	1	9	3	3
1	1		8	•	1	4	3	3 3
» A22 = f	Fix(10	*rand(» rov1	= [A	11 A1	2]		
A22 =			row1 =					
9	3	3 3	1		7	1	9 2 2	0
4	3	3	6	i .	4	4	2	0
			6		5	7	2	6





$\mathbf{y} = \mathbf{A}\mathbf{x}$ (Matrix-Vector Product)

• Each element of the product vector \mathbf{y} is the result of an inner product (dot product) between a row of \mathbf{A} (a row vector) and the column vector \mathbf{x}

$$y_i = \sum_{k=1}^n a_{ik} x_k$$

$$=\sum_{k=1}^{n}a_{ik}x_k$$

n

 y_i

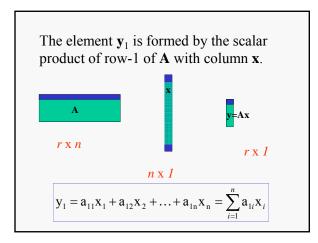
Given the matrix-vector product y = Ax where y is an (r × 1) column vector, x is an (n × 1) and A is an (r × n) matrix, write

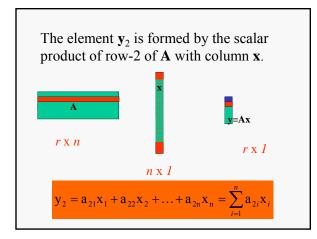
pseudo code for a suitable algorithm.

• Estimate in terms of *r* and *n* the number of floating point operations (multiplies, additions and subtractions) in this algorithm.

With Partner

- Part I of Activity 4 5 minutes
- Describe your algorithm at board



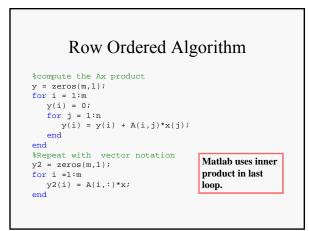


Consider the elements of **y**

$$\begin{bmatrix}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n
\end{bmatrix} = \begin{pmatrix}
y_1 \\
y_2 \\
\vdots \\
y_m
\end{pmatrix}$$

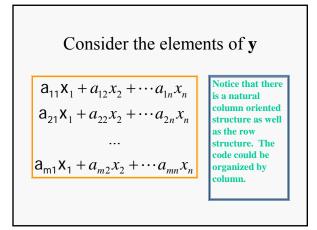
Consider the elements of
$$\mathbf{y}$$

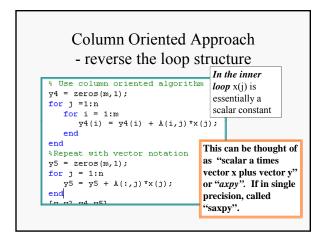
$$\begin{bmatrix} \mathbf{a}_{11}\mathbf{x}_1 + \mathbf{a}_{12}\mathbf{x}_2 + \cdots + \mathbf{a}_{1n}\mathbf{x}_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{pmatrix}$$



Consider the elements of **y**

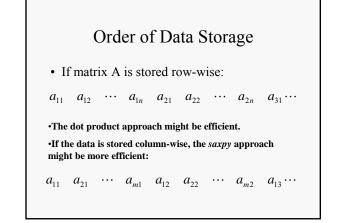
$$\begin{array}{c}
a_{11}x_{1} + a_{12}x_{2} + \cdots + a_{1n}x_{n} \\
a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} \\
& \dots \\
a_{m1}x_{1} + a_{m2}x_{2} + \cdots + a_{mn}x_{n}
\end{array} = \begin{pmatrix}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{pmatrix}$$



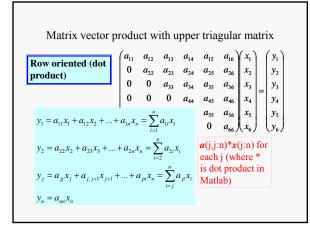




- In matlab, the compact notation makes this choice less than obvious:
- The results and the number of floating point operations are the same in the column and row oriented approaches.
- How could the choice be important?



- Part II of Acivity 4
- Go to board with it



Upper triangular -	check code
<pre>% Set up banded matrix Ab Ab = zeros(m,n); Ab = triu(A,0); yb1 = Ab*x; yb2 = zeros(m,1); for i= 1:m yb2(i)=Ab(i,i:n)*x(i:n); end [yb1 yb2]</pre> This seems to give the correct answer.	ans = 3.7595 3.7595 2.7720 2.7720 2.1410 2.1410 1.6763 1.6763 1.3094 1.3094 1.0073 1.0073 0.7511 0.7511 0.5289 0.5289 0.3331 0.3331 0.1581 0.1581

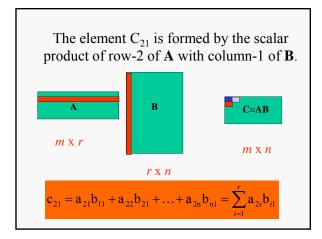
$ \begin{bmatrix} a_{11} & a_1 \\ 0 & a_2 \end{bmatrix} $	$a_{12} a_{13} a_{14} \\ a_{22} a_{23} a_{24} \\ a_{24} a_{25} a_{26} \\ a_{26} a_{26} \\ a$	a ₁₅ a ₂₅	$ \begin{array}{c} a_{16} \\ a_{26} \\ x_2 \end{array} \begin{pmatrix} x_1 \\ x_2 \\ y_2 \\ y_2 \end{array} $	Column oriented
	$\begin{array}{cccc} a_{33} & a_{34} \\ a_{33} & 0 & 0 & a_{44} \end{array}$	a_{35} a_{45} a_{55} 0	$\begin{vmatrix} a_{36} \\ a_{46} \end{vmatrix} \begin{vmatrix} x_3 \\ x_4 \end{vmatrix} = \begin{vmatrix} y_3 \\ y_4 \end{vmatrix}$	$y_2 - y_2 + u_{26}$
$y_1 = a_{11}x_1$ Col 1	$y_1 = y_1 + y_2$ $y_2 = y_2 + Col 2$		$y_1 = y_1 + a_{13}x_3$ $y_2 = y_2 + a_{23}x_3$ $y_3 = a_{33}x_3$	$y_{3} = y_{3} + a_{36}x$ $y_{4} = y_{4} + a_{46}y$ $y_{5} = y_{5} + a_{56}x$ $y_{6} = a_{66}x_{6}$

Upper trian	gular - c	heck c	ode
<pre>%column orientied uppe yb3 = zeros(m,1); for j = 1:n yb3(1:j)=Ab (1:j,j)* end [yb1 yb2 yb3]</pre> This seems to give the correct answer.		3.7595 2.7720 2.1410 1.6763 1.3094 1.0073 0.7511 0.5289	2.1410 1.6763 1.3094 1.0073 0.7511 0.5289

Matrix-Matrix products C= AB

$$C_{kj} = \sum_{i=1}^{r} A_{ki} B_{ij}$$

- Each element of product is an inner (dot) product between a row of A and one column vector.
- Each column of the product is a matrix vector product between **A** and one column of **B**.
- The entire C matrix is just a collection of matrixvector products, and will have the same range of algorithms.



With Partner

- Activity 4, Part III
- Results

Work Group Project

 $C_{kj} = \sum_{i=1}^{r} A_{ki} B_{ij}$

• Given the matrix-matrix product **C=AB** where **A** is an (*m* × *r*) matrix, **B** is an (r × n)

matrix and C is an $(m \times n)$ matrix write pseudo code for a suitable algorithm.

• Estimate in terms of *m*, *n*, and *r* the number of floating point operations (multiplies, additions and subtractions) in this algorithm.

C = AB in full triple loop notation

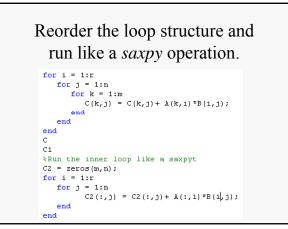
for k = 1:m
 for j = 1:n
 for i = 1:r
 C(k,j) = C(k,j) + A(k,i)*B(i,j);
 end
 end
end

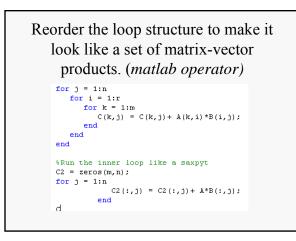
This is formally an n^3 operation.

The inner loop is a vector inner product.

Run the inner loop like an inner vector product.

```
%Run the inner loop like a dot product
C2 = zeros(m,n);
for k = 1:m
    for j = 1:n
        C2(k,j) = C2(k,j)+ A(k,:)*B(:,j);
    end
end
```





Outer Product

- Column vector times a row vector is an outer product: (m x 1)(1 x n) = (m x n).
- The outer product produces a matrix.
- Reorder the loops to present the matrix product as a sum of outer products.

Reorder loops

tReorder loops to look like outer prods
C4 = zeros(m,n);
for i = 1:r
 for j = 1:n
 for k = 1:m
 C4(k,j) = C4(k,j) + \lambda(k,i) *B(i,j);
 end
end

k-loop looks like column vector times scalar (saxpy) *jk* loops look like column vector times a row vector (outer product)

•*ijk* loops look like sum of outer products, each of which is $(m \ge n)$.

Outer Product Formulation

Windows Matlab timings

n Dot Saxpy MatVec Outer Direct

					-
10	0.0180	0.0003	0.0003	0.0022	0.0001
50	0.0056	0.0022	0.0002	0.0008	0.0001
100	0.0237	0.0103	0.0012	0.0052	0.0005
200	0.1166	0.0557	0.0066	0.0369	0.0039
400	0.8740	0.3439	0.0896	1.2878	0.0320
800	8.0158	2.5688	1.1946	12.6034	0.2466
>>					

MatVec and Direct clearly fastest for all lengths. Both of them use matlab operator for most time consuming steps.

These are elapsed times are from tic/toc in wall-clock seconds.

n Dot Saxpy MatVec Outer Direct

	Dot	Балру	mai vu	Outer	Diffeet
					-
10	0.0342	0.0020	0.0026	0.0017	0.0000
50	0.0123	0.0047	0.0004	0.0012	0.0005
100	0.0553	0.0219	0.0019	0.0156	0.0003
200	0.2563	0.1084	0.0134	0.1606	0.0050
400	1.4821	0.7356	0.2074	0.9561	0.0157
800	13.489	7 4.9986	5 1.7941	7.3177	0.1123
>>					

Some times are slower, others are faster..

These are elapsed times in seconds.

	Comparison
n Dot Saxpy M	atVec Outer Direct
10 0.0180 0.0003 0.0	0003 0.0022 0.0001
50 0.0056 0.0022 0.0	0002 0.0008 0.0001
100 0.0237 0.0103 0	.0012 0.0052 0.0005
200 0.1166 0.0557 0	.0066 0.0369 0.0039
400 0.8740 0.3439 0	.0896 1.2878 0.0320
800 8.0158 2.5688 1	.1946 12.6034 0.2466
»>	n Dot Saxpy MatVec Outer Direct
	10 0.0342 0.0020 0.0026 0.0017 0.0000
	50 0.0123 0.0047 0.0004 0.0012 0.0005
	100 0.0553 0.0219 0.0019 0.0156 0.0003
	200 0.2563 0.1084 0.0134 0.1606 0.0050
	400 1.4821 0.7356 0.2074 0.9561 0.0157
	800 13.4897 4.9986 1.7941 7.3177 0.1123

Activity 4 – Part IV