
See reverse side

CSS 455 Winter 2012 C. Jackels
Activity No. 4 Answers January 23, 2012
Names (must be present):
Part 1.

• Given the matrix-vector product
y = Ax

where y is an (r × 1) column vector,
x is an (n × 1) and A is an (r × n) matrix, write pseudo
code for a suitable algorithm.

• Estimate in terms of r and n the number of floating point
operations (multiplies, additions and subtractions) in this
algorithm.

k

n

k
iki xay ∑

=

=
1

Part II
Given the algorithm for the row-ordered matrix vector product:

Modify as needed for the case where A is upper triangular

%compute the Ax product
y = zeros(m,1);
for i = 1:m
 y(i) = 0;
 for j = 1:n
 y(i) = y(i) + A(i,j)*x(j);
 end
end

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

66

5655

464544

36353433

2625242322

161514131211

00000
0000

000
00

0

a
aa
aaa
aaaa
aaaaa
aaaaaa

For i from 1 to r
 Sum = 0
 For k from 1 to n
 Sum = sum + a(i,k)*x(k)
 End
 y(i) = sum
end

The inner loop is run rxn times (an n2 operation) and
executes one add and one multiply each time: 2r n flops.

%compute the Ax product
y = zeros(m,1);
for i = 1:m
 y(i) = 0;
 for j = i:n
 y(i) = y(i) + A(i,j)*x(j);
 end
end

Each run of the j-loop (across a row) now need
only begin with the diagonal element to skip
multiplies involving zeros. You could write the
inner loop as a dot product with the active
vectors being (i:n) in length.

See reverse side

Part III

• Given the matrix-matrix product
C=AB

where A is an (m × r) matrix, B is an (r × n)
matrix and C is an (m × n) matrix write pseudo
code for a suitable algorithm.

• Estimate in terms of m, n, and r the number of
floating point operations (multiplies, additions and
subtractions) in this algorithm.

∑
=

=
r

i
ijkikj BAC

1

For j from 1 to n
 For k from 1 to m
 Sum = 0
 For i from 1 to r
 Sum = sum + A(k,i)*B(i,j)
 End
 C(k,j) = sum
 End
end

The inner loop is run rxnxn times (an n3 operation) and
executes one add and one multiply each time: 2rnm flops.

