CSS 455 Winter 2012 Activity No. 4 Answers Names (must be present): Part 1.

$y_i = \sum_{k=1}^n a_{ik} x_k$

- Given the matrix-vector product y = Ax
 where y is an (r × 1) column vector, x is an (n × 1) and A is an (r × n) matrix, write pseudo code for a suitable algorithm.
- Estimate in terms of *r* and *n* the number of floating point operations (multiplies, additions and subtractions) in this algorithm.

C. Jackels January 23, 2012

```
For i from 1 to r

Sum = 0

For k from 1 to n

Sum = sum + a(i,k)*x(k)

End

y(i) = sum

end
```

The inner loop is run rxn times (an n² operation) and executes one add and one multiply each time: 2r n flops.

Part II Given the algorithm for the row-ordered matrix vector product:

```
% compute the Ax product
y = zeros(m,1);
for i = 1:m
    y(i) = 0;
    for j = 1:n
        y(i) = y(i) + A(i,j)*x(j);
    end
end
```

(a_{11})	<i>a</i> ₁₂	<i>a</i> ₁₃	a_{14}	<i>a</i> ₁₅	a_{16}
0	a_{22}	a_{23}	a_{24}	a_{25}	a_{26}
0	0	<i>a</i> ₃₃	<i>a</i> ₃₄	<i>a</i> ₃₅	a_{36}
0	0	0	a_{44}	a_{45}	a_{46}
0	0	0	0	<i>a</i> ₅₅	a_{56}
0	0	0	0	0	a_{66}

Modify as needed for the case where **A** is *upper triangular*

```
%compute the Ax product
y = zeros(m,1);
for i = 1:m
    y(i) = 0;
    for j = i:n
        y(i) = y(i) + A(i,j)*x(j);
    end
end
```

Each run of the j-loop (across a row) now need only begin with the diagonal element to skip multiplies involving zeros. You could write the inner loop as a dot product with the active vectors being (i:n) in length.

Part III

$$C_{kj} = \sum_{i=1}^{r} A_{ki} B_{ij}$$

• Given the matrix-matrix product C=AB

where **A** is an $(m \times r)$ matrix, **B** is an $(r \times n)$ matrix and **C** is an $(m \times n)$ matrix write pseudo code for a suitable algorithm.

• Estimate in terms of *m*, *n*, and *r* the number of floating point operations (multiplies, additions and subtractions) in this algorithm.

```
For j from 1 to n

For k from 1 to m

Sum = 0

For i from 1 to r

Sum = sum + A(k,i)*B(i,j)

End

C(k,j) = sum

End

end

The inner loop is run rxnxn times (an n<sup>3</sup> operation) and

executes one add and one multiply each time: 2rnm flops.
```