CSS 455

Winter 2012

C. Jackels

Activity No. 9

February 13, 2012

Names (must be present):

Part I. Consider the following set of three data points:

Xi	-2	0	1
$\mathbf{y_i} = \mathbf{f}(\mathbf{x_i})$	-27	-1	0

The goal is to find the interpolant in terms of

- 1. What is the order of the interpolating polynomial? What are the monomial functions to be used?
- 2. If the coefficients of the terms are designated a_i , write down the system of linear equations in the form of the Vandermonde matrix for this system. Put in numeric values for all except the unknown coefficients.

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}$$

3. At this point, you can solve the 3 x 3 system either using matlab or by hand. Having done that, write down the polynomial interpolant p(x) for the data and evaluate it at x=-1

Part II. Consider the following set of three data points:

Xi	-2	0	1	
$y_i = f(x_i)$	-27	-1	0	The goa

The goal is to find the interpolant in terms of Lagrangian polynomials.

- 1. What is the order of the interpolating polynomial?
- 2. Write down the three Lagrangian basis functions for this problem from the slide:

- 3. Obtain the ℓ_1 function above from the general formula: $l_j(x) = \prod_{k \neq j} \frac{(x x_k)}{(x_j x_k)}$
- 4. If the coefficients of the terms are designated a_i , write down the system of linear equations in the form below. The lagrangian functions above play the roles of the ϕ 's below. Put in numeric values for all except the unknown coefficients.

$$\begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

5. At this point, you can solve the 3 x 3 system either using matlab or by hand. Having done that, write down the polynomial interpolant p(x) for the data and evaluate it at x=-1.

Part III. Consider the following set of three data points:

$\mathbf{x_i}$	-2	0	1	
$\mathbf{y_i} = \mathbf{f}(\mathbf{x_i})$	-27	-1	0	The goal is to find the interpolant in terms of Newton
				polynomials.

1. What is the order of the interpolating polynomial?

2. Write down the three Newton basis functions for this problem <u>from the slide:</u>

3. Obtain the $\phi_2(x)$ function above from the general formula: $\varphi_j(x) = \prod_{k=1}^{j-1} (x - x_k)$

4. If the coefficients of the terms are designated a_i , write down the system of linear equations in the form below. The Newton functions above play the roles of the ϕ 's below. Put in numeric values for all except the unknown coefficients.

$$\begin{pmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \cdots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \cdots & \varphi_n(x_2) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1(x_n) & \varphi_2(x_n) & \cdots & \varphi_n(x_n) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

5. At this point, you can solve the 3 x 3 system either using matlab or by hand. Having done that, write down the polynomial interpolant p(x) for the data and evaluate it at x=-1.

See reverse side