Completion of gas law chapter	
Completion of gas law chapter	
Ch 5 of Zumdahl	
Next Week: Week 7	
• <u>GA7</u>	
	<u> </u>
	1
Problem #3, page 222 2 KClO ₃ (s) = 2 KCl(s) + 3 O ₂ (g)	
Oxygen is collected over water.	
 Gas contains the oxygen generated plus the equilibrium vapor pressure of water at this temp. 	
KCIO, Oxygen plus	
water vapor	

Problem #3, page 222

- Oxygen is collected over water.
- Gas contains the oxygen generated plus the equilibrium vapor pressure of water at this temp.
- 1st: what is the partial pressure of oxygen?
- 2nd: How many moles of oxygen
- 3rd: How many moles of potassium chlorate?

What is the partial pressure of oxygen?

- 1. 755.3 torr
- 2. 23.8 torr
- 3. 779.1 torr
- 4. 731.5 torr
- 5. 760 .0 torr

Problem #3, page 222

- 1st: what is the partial pressure of oxygen?
- 2nd: How many moles of oxygen?
- 0.0394 mol O₂
- 3rd: How many moles of potassium chlorate?
- 0.0262 mol KClO₃

Problem 5-29 317 torr H₂; 50.7 torr N₂

- What are final partial pressures of H₂ and N₂.
- $V_f = 3.00 L$.

Problem 5-37 970 K

- Bursts at 2500 torr
- T = 21.0 °C
- P = 758 torr
- Then heated
- At what Temp will it burst?

Problem 5-57

- Sample of CH₄ contains small amount of He
- Density = 0.70902 g/L at 0.0°C and 1.000 atm
- What is the volume % of He?
- 98.84% methane

Problem 4-59

- $Fe(s) + H_2SO_4(aq) = FeSO_4(aq) + H_2(g)$
- Volume of hydrogen = 4800 m³ x 1.20 =?
- T=0°C, and P = 1.0 atm: moles of H_2 ?
- What mass of iron was needed?
- 1.5 x 10⁷ g Fe

Real Gases vs Ideal Gases

• For an ideal gas:

$$PV = nRT$$

$$\frac{PV}{nRT} = 1$$

Real Gases: van der Waals

$$P = \frac{nRT}{V}$$
 (for ideal case)

b represents the volume unavailable due to volume of the actual molecules. It is a *molar* quantity. For example, for N_2 it is 0.0391 L/mol

How do we expect b to vary from gas to gas?

Real Gases: van der Waals

$$PV = nRT$$
 (for ideal case)
 $P' = \frac{nRT}{V \cdot nb}$ (correctio n measured V is too large)

P' would be observed if molecules have volume but are noninteracting. Real molecules attract each other, giving lower pressure.

 P_{obs} < P' , and we introduce a correction factor

$$P_{obs} = P' - P''$$

Real Gases: van der Waals

$$PV = nRT$$
 (for ideal case)

$$P' = \frac{nRT}{V - nb}$$
 (correctio n: measured V is too large)

$$P_{obs} = P' - P''$$

Correction factor P" is proportional to the <u>square</u> of the molecule density, because the number of collisions is thusly proportional:

$$\sim (n/V)^2$$

$$P_{obs} = P' - P'' = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$
 (measured P is too small)

Real Gases: van der Waals

$$PV = nRT$$
 (for ideal case)

$$P' = \frac{nRT}{V - nb}$$
 (correction : measured V is too large)

$$P_{obs} = \frac{nRT}{V - nb} - a \left(\frac{n}{V}\right)^2$$
 (P is reduced by interactions)

Real Gases: van der Waals

PV = nRT (for ideal case)

$$P' = \frac{nRT}{V - nb}$$
 (correction: measured V is too large)

$$\left[P_{obs} + a\left(\frac{n}{V}\right)^2\right] (V - nb) = nRT \text{ (van der Waals)}$$

a represents the pressure reduction due to attraction between the actual molecules. It is a molar quantity. For example, for N $_2$ it is 1.39 atm $\rm L^2/mol^2$

What magnitude is $(n/V)^2$

How do we expect a to vary from gas to gas?

TABLE 5.3 Values of van der Waals Constants for Some Common Gases $a\left(\frac{\text{atm L}^2}{\text{mol}^2}\right)$ $b\left(\frac{L}{\text{mol}}\right)$ He 0.034 0.0237 0.211 0.0171 1.35 0.0322 $0.0398 \\ 0.0511$ Kr 2.32 Xe H₂ 4.19 0.244 0.0266 N₂ 1.39 0.0391 1.36 0.0318

6.49

3.59 2.25

4.17

0.0562

0.0427 0.0428

0.0371

 Cl_2

CO₂ CH₄ NH₃ Do the values support the trends we predicted?

TABLE 5.3 Values of van der Waals Constants for Problem 5-87 Some Common Gases • 0.5000 mol N₂ $a\left(\frac{\operatorname{atm} L^2}{\operatorname{mol}^2}\right)$ $b\left(\frac{L}{\text{mol}}\right)$ • 1.000L flask He 0.034 0.0237 • 25.0°C 0.211 0.0171 Ne Ar Kr 1.35 0.0322 • What is the 2.32 0.0398 Xe H₂ 0.0511 0.0266 4.19 0.244 pressure? 1.39 0.0391 • Ideal: 12.24 atm $\begin{matrix} N_2 \\ O_2 \end{matrix}$ 1.36 0.0318 • VDW: 12.13 atm Cl_2 6.49 0.0562 0.0427 0.0428 CO_2 3.59 • Difference: 0.91% 2.25 CH₄ 4.17 0.0371 NH₃ H₂O 5.46 0.0305

Values of van der Waals Constants for Some Common Gases $a\left(\frac{\text{atm }L^2}{\text{mol}^2}\right)$ $b\left(\frac{L}{\text{mol}}\right)$ He 0.034 0.0237 0.211 0.0171 1.35 0.0322 Kr 2.32 0.0398 Xe H₂ 4.19 0.0511 0.244 0.0266 N₂ 1.39 0.0391 02 1.36 0.0318 Cl_2 6.49 0.0562 CO₂ 3.59 0.0427 0.0428 CH₄ 2.25 4.17 0.0371 NH₃ H₂O 5.46 0.0305

TABLE 5.3

Problem 5-93

 Of the molecules H₂, N₂, CO₂, and CH₄, predict which has the strongest intermolecular interactions.

CO₂

TABLE 5.3 Values of van der Waals Constants for Some Common Gases

Gas	$a\left(\frac{\operatorname{atm} L^2}{\operatorname{mol}^2}\right)$	$b\left(\frac{L}{\text{mol}}\right)$
He	0.034	0.0237
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H ₂	0.244	0.0266
N ₂	1.39	0.0391
O ₂	1.36	0.0318
Cl ₂	6.49	0.0562
CO_2	3.59	0.0427
CH ₄	2.25	0.0428
NH_3	4.17	0.0371
H ₂ O	5.46	0.0305

- What trend do you see regarding intermolecular interactions for the rare gases: He, Ne, Ar, Kr, and Xe
- The "heaviest" have the strongest interactions

Key Questions – Hanson 11-2

- The clicker quiz on the key questions of Hanson 11-2 will commence in 5 minutes.
- Discuss these questions (1-5, page 214) with your neighbor and make sure you understand them.

$(KE)_{avg} = (3/2) RT$

- Derived from Kinetic Theory of Gases
- Kinetic energy is (1/2)mv²
- Molecules move with a distribution of velocities.
- Absolute temperature (T) is a direct measure of the <u>average</u> kinetic energy of the molecules.
- Relates the macroscopic T to the microscopic kinetic energy.

Do Exercise #2, p. 215 with partner

- What is the KE of 1 mol of hydrogen molecules at 25°C?
- Note: use R=8.314 J/mol K for this type of problem!!!
- 3.72 x 10 ³ J/mol

The kinetic energy of 1 mol of SF₆ molecules is:

- Less than that of 1 mol of hydrogen
- 2. The same as that of 1 mol of hydrogen
- 3. Greater than that of 1 mol hydrogen

$$\mathbf{KE} = \frac{1}{2}M\langle \mathbf{v}^2 \rangle = \frac{3}{2}RT$$

• Solve for the average speed and the root mean square speed:

$$\frac{1}{2}M\langle v^2\rangle = \frac{3}{2}RT$$

$\sqrt{\langle v^2 \rangle} = \sqrt{\frac{3RT}{}}$	(root mean square speed)
$V \setminus V \setminus M$	(1001 illean square speed)

At the projector calculate the rms speed of an $\rm H_2$ molecle at 25°C. With your partner calculate the rms speed of an $\rm SF_6$ molecule at 25°C 226 m/s

Exercise 4, p. 216

- At the projector, calculate the ratio of the rms speeds of H₂and SF₆ at 25°C.
- With your partner compare this to the ratios of the molecular masses and the square roots of the molecular roots.

Problem 1, p217 – out of class

- v (Xe) = 238 m/s
- v (airliner) = 500 miles/h = 222 m/s
- Be sure you can convert this last number.
- 1 in = 2.54 cm

Prob 2, p 217. According to the kinetic theory, the rate of diffusion:

1. Does not depend upon temperature
2. Increases with increasing temperature

33% 3. Decreases with increasing temperature

Prob 2, p 217. According to the kinetic theory, the rate of diffusion:

- 1. Does not depend upon molecular mass
- 2. Increases with increasing molecular mass
- 3. Decreases with increasing molecular mass

Problem 3, p. 218

- Does the rate of diffusion depend in direct proportion on either the mass of the molecule or its temperature?
- NO; NO

diffusion depends upon velocity

$$v \propto \sqrt{T}$$
$$v \propto \sqrt[4]{M}$$

Problem 4, p. 218

- For SF₆: diffusion rate = 18.7 mm/min, M = 146.1 g/mol
- Unknown gas: diffusion rate = 39.9 mm/min
- What is the molar mass of the unknown gas?
 diffusion depends upon velocity

$$v \propto \sqrt{T}$$
 M = 32.1 g/mol $v \propto \sqrt[1]{\sqrt{M}}$

	•
Chapter 6	
• Thursday, Feb 21, 2013	
• Hanson 15-1	
]
Hanson Activity 15-1	
 Discuss Key Questions 1-9 of Activity 15-1, pages 269 - 70, with your partner for five 	
minutes.The clicker quiz will commence in 5 minutes	
	1
Clicker quiz	
You may refer to your Hanson workbook	
 Answer the questions individually 	
 In each case indicate the best answer No paper responses will be accepted 	
Puper responses will be decepted	

	•
Key Question #5	
What examples of a dynamic equilibrium?	
what examples of a dynamic equilibrium:	
Exercise #1, page 260	
At the Projector	
$H_2O(g) + CO(g) = H_2(g) + CO_2(g)$	
 Initially at equilibrium, all of the CO(g) is suddenly converted to ¹⁴CO(g) (C-14 isotope) 	
Where will the C-14 be found after a long time	
period?	
Exercise #2, p. 270	
Answer with your partner	

At equilibrium, the second flask will have more hydrogen gas

- 1. True
- 2. False

 $CH_4(g) + H_2O(g) = 3 H_2(g) + CO(g)$ When carbon monoxide is added, the number of moles of hydrogen will:

- 1. Increase
- 2. Decrease
- 3. Not change

 $CH_4(g) + H_2O(g) = 3 H_2(g) + CO(g)$ When water vapor is removed, the number of moles of hydrogen will:

- 1. Increase
- 2. Decrease
- 3. Not change

 $CH_4(g) + H_2O(g) = 3 H_2(g) + CO(g)$ When methane is added, the number of moles of hydrogen will:

- 1. Increase
- 2. Decrease
- 3. Not change

CH₄(g) + H₂O(g) = 3 H₂(g) + CO(g) When carbon monoxide is added, the number of moles of hydrogen will:

- 1. Increase
- 2. Decrease
- 3. Not change

$$CH_4(g) + H_2O(g) = 3 H_2(g) + CO(g)$$

- At equilibrium, the total pressure is increased by adding argon gas. (The partial pressures of the reactants and products do not change.)
- What happens to the number of moles of hydrogen when equilibrium is reestablished?

-	

$CH_4(g) + H_2O(g) = 3 H_2(g) + CO(g)$

- At equilibrium, the total volume is suddenly increased, reducing the partial pressures of all components.
- Since there are four moles of gas on the product side, the reaction will shift to the right.
- The number of moles of H₂ will increase.

3g: add a catalyst

- Catalysts change the underlying mechanism, but do not affect the equilibrium.
- No change in the moles of hydrogen
- Equilibrium may be established more rapidly, but is the same.

Getting a bit ahead of ourselves

- Endothermic reactions absorb heat from the surroundings
- Exothermic reactions release heat to the surroundings
- Le Chatelier's Principle also applies to temperature stress: the equilibrium will shift to partially counter the temperature change.

-	
-	

$$CH_4(g) + H_2O(g) = 3 H_2(g) + CO(g)$$

This reaction is endothermic – absorbs heat from the environment

$$CH_4(g) + H_2O(g) + energy$$

= $3 H_2(g) + CO(g)$

If at equilibrium, the temperature of the vessel is increased, what will happen? Discuss with your partner

When the temperature is raised, the number of moles of hydrogen will decrease

- 1. True
- 2. False

Problem 1, page 272

- $N_2(g) + O_2(g) = 2 NO(g)$
- Volume is suddenly decreased, as in an engine.
- Discuss with your partner

$N_2(g) + O_2(g) = 2 \text{ NO(g)}$: When volume is decreased, the amount of NO will:

- 1. Increase
- 2. Decrease
- 3. Stay the same

Problem #2, page 272

 $N_2(g) + 3H_2(g) = 2NH_3(g) + energy$

- This reaction is exothermic: gives off heat
- Number of moles of gas decreases during forward reaction
- Discuss with partner: How will changes in pressure and temperature affect the amount of ammonia produced

Problem 2, p. 272 To obtain the highest yield of ammonia:

25% 1. Use high T and P

25% 2. Use low T and P

25% 3. Use high T and low P

25% 4. Use low T and high P

The Equilibrium Constant

$$N_2(g) + 3 H_2(g) = 2NH_3(g)$$

Concentrations of gases can be measured either in mol/L or in atm. In mol/L:

$$K = \frac{\left[\mathbf{NH}_3 \right]^2}{\left[\mathbf{N}_2 \right] \left[\mathbf{H}_2 \right]^3}$$

Products in numerator

Reactants in denominator

The Equilibrium Constant

$$N_2(g) + 3 H_2(g) = 2NH_3(g)$$

Exponents come from reaction coefficients

$$K = \frac{\left[\text{NH}_3 \right]^2}{\left[\text{N}_2 \right] \left[\text{H}_2 \right]^3}$$

Multiply by a constant

$$2N_2(g) + 6H_2(g) = 4NH_3(g)$$

$$K = \frac{\left[\mathrm{NH}_3\right]^4}{\left[\mathrm{N}_2\right]^2 \left[\mathrm{H}_2\right]^6}$$

If we multiply the reaction by a $\text{constant } \alpha$

$$K \Rightarrow K^{\alpha}$$

If we reverse the reaction

$$K \Rightarrow \frac{1}{K}$$

Are K and K_p numerically equal?

$$N_2(g) + 3 H_2(g) = 2NH_3(g)$$

$$K = \frac{\left[\text{NH}_3 \right]^2}{\left[\text{N}_2 \left[\text{H}_2 \right]^3 \right]} \qquad K_p = \frac{P_{\text{NH}_3}^2}{P_{\text{N}_2} P_{\text{H}_2}^3}$$

$$X_p = \frac{P_{\rm NH_3}^2}{P_{\rm N_2} P_{\rm H_2}^3}$$

in gas moles in reaction.

In general
$$P_i = \frac{n_i RT}{V} = \left(\frac{n_i}{V}\right) RT = C_i RT = [i]RT$$

$$K_p = \frac{P_{NH_3}^2}{P_N P_N^3} =$$

For the reaction

$$N_2(g) + O_2(g) = 2 \text{ NO}(g)$$

Does $K_p = K$?

- 1. Yes
- 2. No