Hanson Activity 5-3

- Discuss Key Questions 1-4 of Activity 5-3, page 83, with your partner for five minutes.
- The clicker quiz will commence at 1:20 PM sharp.

Hanson Activity 5-3

- Discuss Key Questions 1-4 of Activity 5-3, page 83, with your partner for five minutes.
- The clicker quiz will commence at 1:20 PM sharp.

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer
- No paper responses will be accepted

Solution concentration and dilution (continued)

Ch 4 of Zumdahl

Strong and Weak electrolytes

Dilution: how to measure volumes Calibratio mark (a) (b) (c)

Model (p.82)at Projector (without X's)

Calculate the mass of $Ag_2CO_3(s)$ produced by mixing 125 mL of 0.315 M $Na_2CO_3(aq)$ with 75.0 mL of 0.155 $AgNO_3(aq)$.

- Write the balanced net ionic reaction
- Determine initial ion amounts
- Determine the limiting reactant
- Calculate the amount of Ag₂CO₃(s) produced.

Ex 1(p.84)at Projector (without X's)

Calculate the mass of $Fe(OH)_3(s)$ produced by mixing 50.0 mL of 0.153 M KOH(aq) with 25.0 mL of 0.255 $Fe(NO_3)_3(aq)$ and the moles of excess reactant

- Write the balanced net ionic reaction
- Determine initial ion amounts
- Determine the limiting reactant
- Calculate the amount of Fe(OH)₃(s) produced.

Ex 2(p.85) (without X's)

Do Exercise 2 with your partner What is the balanced equation $HCl(aq) + NaOH(aq) = NaCl(aq) + H_2O(l)$ Determine the initial amounts of the reactants

The initial amount of HCl is: 1. 0.25 mol 2. 0.375 mol 3. 0.0375 mol 4. 37.5 mmol

Ex 2(p.85) Which is the excess reactant? 33% 1. HCl 33% 2. NaOH 33% 3. NaCl

What is the final concentration of NaOH?

- 1. 0.0174 mol/L
- 2. 0.0087 mol/L
- 3. 8.7 mmol/mL

Problem (p.86) (without X's)

Do Problem on page 86 with partner outside of class.

You need to know:

- Sulfuric acid is diprotic in this reaction $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$
- NaOH(aq) completely reacts with the sulfuric acid to form Na₂SO₄(aq) and water.
- What is the concentration of NaOH solution?

Problem 4-26

- 1.584 g of Mn(s) is dissolved in nitric acid and diluted to 1.000 L. (stock solution)
- 2.883 x 10⁻² M Mn²⁺
- Solution A: 50.00 mL of stock solution is diluted to 1000.0 mL
- Solution B: 10.00 mL of A is diluted to 250.0 mL
- What are these concentrations?
- $1.442 \times 10^{-3} M$; $5.768 \times 10^{-5} M$

Hanson Activity 4-2

- Discuss Key Questions 1-4 of Activity 4-2, page 59, with your partner for five minutes.
- The clicker quiz will resume in 5 minutes

Questions about Key Questions on page 59 ?

Precipitation Reaction of KCl(aq) with AgNO₃(aq) KCl solution AgNO₃ solution Solid AgCl and dissolved KNO₃ and dissolved KNO₃

Precipitation of Silver Chloride, AgCl(s)

aq= aqueous (soluble) KNO₃ (aq)

s = solid (or Insoluble) AgCl (s)

I = liquid

g = gas

KCl mixed with AgNO₃

- Complete ionic equation $K^+(aq) + Cl^-(aq) + NO_3^-(aq) + Ag^+(aq) \rightarrow$ $K^+(aq) + NO_3^-(aq) + AgCl(s)$
- Net Ionic equation
 Cl⁻(aq) + Ag⁺(aq) → AgCl(s)
- Balanced Molecular Equation
 AgNO₃(aq) + KCl(aq) → AgCl(s) + KNO₃(aq)

"Simple" Solubility Rules (Zumdahl Table 4.1)

- 1. Most nitrate (NO₃-) salts are soluble.
- 2. Most alkali metal (group 1A) salts and $\mathrm{NH_4^+}$ are soluble.
- Most Cl⁻, Br⁻, and l⁻ salts are soluble (except Ag⁺, Pb²⁺, Hg₂²⁺).
- 4. Most sulfate salts are soluble (except $BaSO_4$, $PbSO_4$, Hg_2SO_4 , $CaSO_4$).
- Most OH⁻ are only slightly soluble (NaOH, KOH are soluble, Ba(OH)₂, Ca(OH)₂ are marginally soluble).
- 6. Most S²-, CO₃²-, CrO₄²-, PO₄³- $\$ 3 salts are only slightly soluble, except for those containing the cations in Rule 2.

Simpler Solubility Rules

- 1. Most nitrate (NO₃-), acetate (C₂H₃O₂-) and perchlorate (ClO₄-) salts are soluble.
- 2. Most alkali metal (Li⁺, Na⁺, K⁺, etc.) and NH_{Δ}^{+} salts are soluble.
- 3. Most Cl⁻, Br⁻, and l⁻ salts are soluble $(except Ag^+, Pb^{2+}, Hg_2^{2+})$.
- 4. Most sulfate (SO₄²⁻)salts are soluble (<u>except</u> BaSO₄, PbSO₄, Hg₂SO₄, CaSO₄).
- 5. Ba(OH)₂ and Ca(OH)₂ are marginally soluble
- 6. Most other salts are insoluble.

Questions about Key Questions on p. 59?

• With Partner, do Ex 1 on p. 59

HA 4-2, Ex 2a, p. 60

- 2a) Lead(II) acetate and sodium carbonate (note: you should know the ions and how to write the formulas or have them on your card)
 Write these steps in your workbook!!
- ii. Write formulas for reactants and write the ions that they dissociate into:
- $Pb(C_2H_3O_2)_2$ (aq) + Na_2CO_3 (aq) dissociate into $Pb^{2+}(aq) + 2 C_2 H_3 O_2^{-}(aq) + 2Na^{+}(aq) + CO_3^{2-}(aq)$
- iii. Will precipitation occur? (solubility rules, exchange partners between anions and cations)
- → 2Na(C₂H₃O₂)(aq soluble) + PbCO₃(s insoluble)

04-2 Precipitation Reactions

iv. Total Ionic Equation: includes spectator

$$Pb^{2+}(aq) + 2C_2H_3O_2^{-}(aq) + 2Na^{+}(aq) + CO_3^{2}(aq)$$

$$\rightarrow$$
 2C₂H₃O₂-(aq) + 2Na⁺ (aq) + PbCO₃(s)

04-2 Precipitation Reactions

v) Net Ionic Equation omits spectator ions:

$$Pb^{2+}(aq) + CO_3^{2-}(aq) \rightarrow PbCO_3(s)$$

vi) Formula Equation (also called Molecular **Equation**) has formulas:

$$Pb(C_2H_3O_2)_2$$
 (aq) + Na_2CO_3 (aq)
 $\rightarrow 2Na(C_2H_3O_2)(aq) + PbCO_3(s)$

Hanson	04 - 2
--------	--------

• With partner, do Ex 2b and 2c following the example Ex 2a that we did in class

Problem 4-33b

- Write all three types of reaction for:
- Lead(II) nitrate and sodium chloride
- Consider mixing *exactly* stiochiometric amounts of lead nitrate and sodium chloride

$Pb^{2+(aq)} + 2 Cl^{-(aq)} \rightarrow PbCl_2(s)$

If *exactly* stoichiometric amounts of reactants are mixed, will the resulting solution conduct electricity after the precipitate settles to the bottom?

- 1. Yes
- 2. No

Problem 4-41

- What mass of Na₂CrO₄ (s) is needed to precipitate all of Ag+ ions 75.00 mL of 0.100 M AgNO₃ solution?
- 0.607 g

Problem 4-47

- 1.42 g of M₂SO₄ was dissolved and treated with excess CaCl₂(aq), precipitating all of the sulfate as 1.36 g of CaSO₄(s).
- What element is M?
- How to begin? What do we know?
- Same amount of sulfate in both samples.
- Calculate the mass of sulfate in the precipitate

1.42 g of $\rm M_2SO_4$ was dissolved and treated with $\it excess$ CaCl₂(aq), precipitating *all* of the sulfate as 1.36 g of CaSO₄(s).

• Calculate the mass of sulfate in the precipitate

mass sulfate = mass sample
$$\times \left(\frac{\text{MW of SO}_4^{2^{-}}}{\text{MW of CaSO}_4} \right)$$

mass sulfate = 1.36 g × $\left(\frac{96.07 \text{ g/mol}}{136.15 \text{ g/mol}}\right)$ = 0.960 g

1.42 g of M ₂ SO ₄ was dissolved and treated with excess
CaCl ₂ (aq), precipitating <i>all</i> of the sulfate as 1.36 g of
CaSO₄(s).

- How much sulfate in original sample?
- 0.960 g
- How much M in original sample?
- 0.460 g
- What do we need to determine M?
- Moles of M

mass sulfate = 1.36 g ×
$$\left(\frac{96.07 \text{ g/mol}}{136.15 \text{ g/mol}}\right)$$
 = 0.960 g

From 1.42 g of M₂SO₄ is formed 1.36 g of CaSO₄(s). Which is true?

- 3% 1 Moles of M = Moles of sulfate
- 2. Moles of M = 2 x Moles of sulfate
- 3. Moles of M = Moles of Ca

Thursday, Feb 7, Ch 4 cont'd

Hanson Activity 4-3

- Discuss Key Questions 1-4 of Activity 4-3, page 63, with your partner for five minutes.
- The clicker quiz will commence at 8:50 sharp

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer
- No paper responses will be accepted

Exercises 1-2, p. 63

- Reaction 1: $HCI(aq) + NH_3(aq) \rightarrow NH_4^+(aq) + CI^-(aq)$
- Reverse of Reaction 1:

 $HCI(aq) + NH_3(aq) \leftarrow NH_4^+(aq) + CI^-(aq)$

acid base

Continue with your partner

_				_
_				_
				_
-				-
-				_
-				-
_				
_				
_				_
_				
_				
_				
_				
_				_
				_
_				-
_				

Exercise 3, p. 63

• Ammonia plus nitrous acid with partner

For reaction of NH₃ and HNO₂, what is the *base* on the *product* side:

1. NO₂-(aq)
2. NH₄+(aq)
3. NH₃(aq)

- Complete Ex 4, p.64 already done
- Skip Exercises 5 7
- Do the first part of Ex 8 question

Ex 8, page 65 of Hanson: Which reactant is a base? 50% 1. H ₂ SO ₄ 50% 2. HPO ₄ ²⁻	
 Hanson Activity 4-4 Discuss Key Questions 1-4 of Activity 4-4, page 68, with your partner for five minutes. The clicker quiz will resume in 5 minutes 	
 Exercise 1, page 69, using Model 1 At the projector: O₂, H₂O, CH₄, CO₂, and SF₆ With your partner complete Ex 1 	

In SO_4^{2-} , the oxidation number of S is:

- 1. +2
- 2. +4
- 3. +6
- 4. -2
- 5. -4

In H₂S, the oxidation number of S is:

- 1. +2
- 2. +4
- 3. +6
- 4. -2
- 5. -4

In Na₂SO₃, the oxidation number of S is:

- 1. +2
- 2. +4
- 3. +6
- 4. -2
- 5. -4

Model 2, p. 70 Key Questions

$2 \text{ Cu(s)} + \text{O}_2(g) \rightarrow 2 \text{ CuO(s)}$

- 5. How many electrons are transferred from one copper atom to one oxygen atom?
- 6. What are the oxidation numbers in all three species?
- 7. What species is oxidized? What species is reduced?

Model 2, p. 70 Key Questions

$2 \text{ Cu(s)} + \text{O}_2(g) \rightarrow 2 \text{ CuO(s)}$

- 8. What is the oxidizing agent? The reducing agent?
- 9. If a species has an increase in oxidation number, is it an oxidizing agent or reducing agent?
- 10. How can we distinguish redox reactions from the other types.

Model 2, p. 70 Key Questions

- Exercise 2 a at projector FeO(s) + CO(g) = Fe(s) + CO₂(g)
- Is it balanced?
- Can you tell from the number of electrons transferred?
- Do Exercises 2b-2f with partner. (2f is unbalanced)

Problem 4-69c to balance:

• $C_3H_8(g) + O_2(g) = CO_2(g) + H_2O(l)$ -8/3 +1 0 +4-2 +1 -2

Can be done by inspection

 $C_3H_8(g) + O_2(g) = 3 CO_2(g) + H_2O(I)$

 $C_3H_8(g) + O_2(g) = 3 CO_2(g) + 4 H_2O(l)$

 $C_3H_8(g) + 5 O_2(g) = 3 CO_2(g) + 4 H_2O(l)$

Do the electrons exchanged balance?

C: 3 atoms from -8/3 to $+4 = 3 \times (20/3) = 20$

O: 10 atoms from 0 to $-2 = 10 \times (2) = 20$

Problem 71-a in acid soln

- $Cu(s) + NO_3^-(aq) = Cu^{2+}(aq) + NO(g)$
- 0 +5-2 +2 +2-2
- Each copper atom loses 2 electrons (0 -> +2)
- Each nitrogen atom gains 3 electrons (+5 -> +2)
- What must be the ratio of N to Cu atoms?
- 3 Cu: 2 N
- $3 \text{ Cu(s)} + 2 \text{ NO}_3^-(\text{aq}) = 3 \text{Cu}^{2+}(\text{aq}) + 2 \text{ NO(g)}$
- Hydrogen ions are available to balance charge, yielding water as needed.
- $3 \text{ Cu(s)} + 2 \text{ NO}_3^{-}(aq) + 8\text{H}^+ = 3\text{Cu}^{2+}(aq) + 2 \text{ NO(g)} + 4\text{H}_2\text{O}$