| |] | |--|---| | | | | Chapter 3 (continued) | | | Chapter 5 (continued) | | | BCHEM 142
Winter 2013 | | | | | | | | | | | | | | | Hanson Activity 3-3 | | | Discuss Key Questions, Exercises, Got It!, and | | | Problems of Activity 3-3 with your partner for five minutes. | | | The clicker quiz will commence at 8:50 AM | | | sharp. | | | | | | | | | | | | | | | Clickor quiz | | | Clicker quiz | | | You may refer to your Hanson workbookAnswer the questions individually | | | In each case indicate the best answer No paper responses will be accepted | | | | | | | | | | | # What does a mole look like? C Elements that exist as molecules I 2 Hg Fe S₈ #### How large is a mole? - Depends on element's density and atomic weight. - For example: 1 mole of Cu has mass 63.55 g - The density of Cu is: 8.94 g/cm³ - Volume of 1 mole of Cu is ? #### 7.11 cm³ - $29.6 \text{ cm}^3/\text{oz}$, what is the volume in oz? - Mole of Cu is about 0.24 oz or 0.03 cup. ## What amount in moles is represented by 1.50 g of CO₂ - Molecular Weight of CO₂ = ? - Number of moles = ? - Number of molecules = ? - Number of oxygen atoms = ? #### With Partner: Exercises 1-3, p. 40 - Do Ex #1 at projector - Take 2 minutes for exercises 2-3 - What is the answer to Ex 3, p. 40? #### Exercises on p.42 At the projector, what is the molar mass of boron? With Partner: Exercises 5-7, page 42 With Partner: Ex 8-9, p. 42 | Problems p.44 | | |---|---| | Problem 1: just like Ex #4 – work yourself | | | at home. | | | Problem 2: Work part 2a with your partners now. | | | | | | | | | | | | | | | 2b: What is the mass of of the product | | | produced? | 1 | | 2b: What is the mass of of the product produced? | | | | | | | | | | | #### Hanson Activity 3-4: Tasks on p.46 | Name | Line Structure | Molecular | Mass % Composition | | |----------|----------------|-------------------------------|--------------------|-------| | Name | Line Structure | Formula | С | Н | | ethene | = | | | | | propene | / | C ₃ H ₆ | 85.63 | 14.37 | | 1-butene | /~ | | | | | | | | | | Ethene: C_2H_4 85.6% C; 14.4% H 1-butene: C_4H_8 85.6% C; 14.4% H 1-pentene: C_5H_{10} 85.6% C; 14.4% H #### Hanson Activity 3-4 • Discuss Key Questions 1-11 on pp 46-48 with your partner for five minutes. #### Hanson 3-4 - Are there questions about Key Questions 1-112 - Work Exercise 1 at the projector - Carry out Exercise 2 with your partner | - | | |---|--| - | Hanson 3-4 | | |---|---| | Carry out Problem1, p.49, with your partner |] | | Do problem 3, p. 51 outside of class | | | Use the hints on page 52 to develop your | | | strategy. |] | | Ch3: Thursday, Jan 24 | #### **Balanced Chemical Reactions** - What information does a chemical reaction convey? What is its meaning? - What does the reaction say about its rate? - How do we indicate the *physical state* of the reactants and products? - What must be true due to conservation of mass? $$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$ - What interpretations can we give the coefficients? - How would this change if the water product were liquid water instead? - Is the following reaction a balanced reaction? $$2CH_4(g) + 4O_2(g) \rightarrow 2CO_2(g) + 4H_2O(g)$$ $$\frac{1}{2}CH_{4}(g) + O_{2}(g) \rightarrow \frac{1}{2}CO_{2}(g) + H_{2}O(g)$$ | Balance the Following (Hanson | 4-1) | |-------------------------------|------| | missing. | | | | | | | | | | 1 | | | | | _ | | | | |---|--|--|--| | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | _ | | | | | | | | | | _ | | | | | _ | | | | | _ | | | | | _ | _ | | | | | _ | | | | | | | | | | _ | | | | | | | | | | | 1 | |--|---| | Balance the Following (Hanson 4-1) | 5 1 2 5 1 1 | | | Prob 2, page 57, Hanson 4-1 | | | Using the balanced reaction equation for the combustion of propane, determine the number of
moles of oxygen that would react with 0.50 mol propane and the number of moles of carbon
dioxide that would be produced. | | | $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$ | | | 3.8(3) 22(3) 222(3)22(3) |] | | Prob 3, page 57, Hanson 4-1 | | | Using the reaction equation for the combustion of propane, determine the number of grams of
oxygen that would react with 44 g of propane and the number of grams of water that would be | | | produced. | | | $C_3H_8\left(g\right)+5O_2\left(g\right)\longrightarrow3CO_2\left(g\right)+4H_2O\left(g\right)$ | | | | | | | | | | | | | | #### Hanson Activity 5-1 - Discuss Key Questions 1-11 of Activity 5-1, pages 73 and 75, with your partner for five minutes. - The clicker quiz will commence in 5 minutes. #### Clicker quiz - You may refer to your Hanson workbook - Answer the questions individually - In each case indicate the best answer - No paper responses will be accepted #### Exercise 1, page 74 at projector - Recipe: 16 oz butter; 4 eggs; 3c flour, 4c sugar makes 10 doz cookies. - Express as a reaction equation. - Which ingredient will be limiting? - How many cookies can we make? With your partner, complete Exercises 2 & 3 on page 74. | - | | |---|--| # Ex 2b, page 74: Which is the limiting component? 1. Nuts 33% 33% 33% # Ex 3, page 74: How many water molecules can you produce? - 1. 50 - 2. 100 - 3. 150 - 4. 200 - 5. 300 ### Any questions about Key Questions, p. 75? - Work Exercise 4 at projector - Mix 6 moles of hydrogen and 4 moles of oxygen to form water. - What is the balanced reaction? - Which is limiting reagent? - How many moles of water are produced? - With your partner, begin working on Exercises 5-6, pages 75-76. | With partner, do problems 1-2 on page 76. | | |---|--| | Problem 1, p.76: How many grams of cisplatin can be produced? | | | Continue with Prob 2, page 76 | | | | _ | |---|---| | Prob 2, p. 76: How many kilograms of | | | HCN can be produced? | Problem 3-77 from text | | | | | | Reaction of barium peroxide to produce
hydrogen peroxide: | | | BaO₂(s) + HCl(aq) → H₂O₂(aq) + BaCl₂(aq) Is it balanced? | | | • $BaO_2(s) + 2 HCI(aq) \rightarrow H_2O_2(aq) + BaCI_2(aq)$ | | | | | | | | | | | | | | | | | | Prob 26, Ch 3 | | | Eu has two isotopes: 151Eu has mass 150.9196 amu | | | ¹⁵³ Eu has mass 152.9209 amu
Average mass of Eu is 151.96 amu | | | Calculate natural abundances | | | | | | | | | | | #### Problem 38, Ch3 - ullet Sweetener aspartame is $C_{14}H_{18}N_2O_5$ - Calculate molar mass of aspartame - How many moles in 10.0 g of aspartame? - What is the mass of 1.56 mol of aspartame? #### Prob 46, p. 86 - Cyanocobalamin has one Co atom in each molecule. - It contains 4.34% Co by mass. - Calculate the molar mass of cyanocobalamin. #### Problem 56,page87 - Maleic acid: 41.39% C, 3.47% H, & rest is O. - 0.129 mol of maleic acid has mass 15.0 g - What are empirical and molecular formulas of maleic acid? | _ | | | | | |---|--|--|--|--| | _ | _ | _ | #### Problem 66d, page 88 ``` \begin{split} & \text{PCI}_5(I) + \text{H}_2\text{O}(I) = \text{H}_3\text{PO}_4(\text{aq}) + \text{HCI}(\text{aq}) \ (?) \\ & \text{What about P?} \\ & \text{1PCI}_5(I) + \text{H}_2\text{O}(I) = \text{1H}_3\text{PO}_4(\text{aq}) + \text{HCI}(\text{aq}) \ (?) \\ & \text{What about CI?} \\ & \text{1PCI}_5(I) + \text{H}_2\text{O}(I) = \text{1H}_3\text{PO}_4(\text{aq}) + \text{5 HCI}(\text{aq}) \ (?) \\ & \text{What about O?} \\ & \text{1PCI}_5(I) + 4\text{H}_2\text{O}(I) = \text{1H}_3\text{PO}_4(\text{aq}) + \text{5 HCI}(\text{aq}) \ (?) \\ & \text{What about H?} \\ & \text{PCI}_5(I) + 4\text{H}_2\text{O}(I) = \text{H}_3\text{PO}_4(\text{aq}) + \text{5 HCI}(\text{aq}) \ (\checkmark) \\ \end{split} ``` #### Problem72, page 88 of ch 3 5 $CO_2(g)$ + 55 $NH_4^+(aq)$ + 76 $O_2(g)$ \Rightarrow $C_5H_7O_2N(s)$ + 54 $NO_2^-(aq)$ + 52 $H_2O(I)$ + 109 $H^+(aq)$ - Waste water is 3% ammonium ions - 95% of ammonium ions are consumed - How much C₅H₇O₂N(s) is produced 1.0 x 10⁴ kg of water?