Chapter 2 (continued)	
BCHEM 142 Winter 2013	
Hanson Activity 2-3	
 Discuss Key Questions 1-8 on pp 28-29 with your partner for five minutes. 	
 The clicker quiz will commence at 8:50 AM sharp. 	
	<u> </u>
	٦
Clicker quiz	
You may refer to your Hanson workbook	
Answer the questions individuallyIn each case indicate the best answer	

Hanson Activity 3-2

- Discuss Key Questions 1-6 on page 35 with your partner for five minutes.
- The clicker quiz will resume in five minutes.

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer

Problem 1, page 19, Hanson

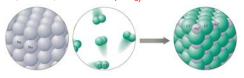
- You started thinking about this in class on Thursday and should have finished it over the weekend.
- Refer to you notes on page 19 of the workbook

% mass of nucleus = $\frac{\text{mass of nucleus}}{\text{mass of atom}} \times 100$

-	

Discussion: Two approaches % mass of nucleus = $\frac{\text{mass of nucleus}}{\text{mass of atom}} \times 100$ • Subtract mass of electrons from atomic mass to get nuclear mass. • Add masses of neutrons and protons to get nuclear mass. Problem 2, page 20 • What is a fm? (where do you find this?) • What is a pm? Problem 2, page 20 • What is a fm? (where do you find this?) • What is a pm? • How to begin? - Draw a sketch of the atom - Consider the ratio of the radii • Work with your partner

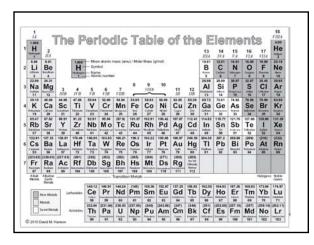
In Molecules,


- Atoms are held together by chemical bonds, which are forces between them
 - Covalent bonds arise from sharing electrons between atoms: H₂O, CO₂, O₂, CH₄, etc

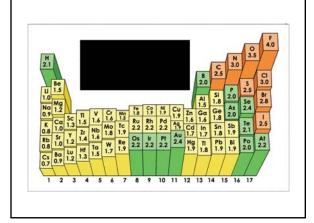
In Molecules,

- Atoms are held together by chemical bonds, which are forces between them
 - Ionic bonds arise from attraction between positive ions (cations) and negative ones (anions): NaCl, NH_4NO_3

Question


- What is it about an atom that determines its chemistry – the ability to form and rearrange chemical bonds?
- What are valence electrons?

The Periodic Table


- Mendeleev
 - Mid 19th century
 - Atomic masses were at hand
 - Organized elements in rows and columns according to atomic mass and valency (how they combined with hydrogen and oxygen)
 - When properties of an element did not match its column, it would be shifted, leaving space for a new element
 - Later, atomic number was seen to be organizing principle

Activity 2-3

- Are there questions about the Key Questions on pp 28-29?
- Exercise 1, page 29– at the overhead projector
- With your group, complete exercises 2-9 on page 29.

_	
-	

Activity 3-2

- Are there questions about the Key Questions 1-4 on page 35?
- Are there questions about the Key Questions 5-9 on page 36?
- Exercise 1-2: look in Zumdahl and find a few entries for each
- Work Ex 3, line 1 at the projector
- With your group, complete exercises 1-3 on pages 36-37.

Activity 3-2

- Are there questions about the Key Questions 10-12 on page 37?
- Are there questions about the Key Questions 13-14 on page 38?
- Exercise 4, page 38— at the overhead projector for sulfuric acid.
- With your group, complete exercise 4 on page 38 for all other acids Model 3.

Problem 41c $^{59}_{27}$ Co²⁺ • What is the atomic number? • How many protons? • What is the mass number? • How many neutrons? • How many electrons? Problem 45: which ion forms? • Ra Te • Rb Problem • Sample contains: 2.02 g hydrogen, 32.07 g of sulfur, and 64.00 g of oxygen. • How much sulfur and oxygen are present in a sample containing 7.27 g of hydrogen? • Problem 61

Problem

- Element forms XBr₂ (ionic cmpd)
- The ion of X has mass number of 230 and 86 electrons
- What is X?
- How many neutrons in X?
- Problem 65

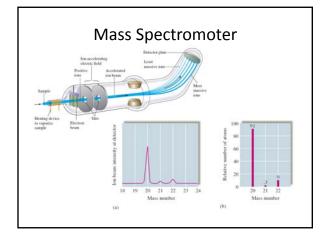
Problem

- Indium oxide contains 4.784 g of In for every 1.000 g of oxygen. The atomic mass of O is assumed to be 16.00.
- If the formula is InO, what is the atomic mass of indium?
- If the formula is In₂O₃, what is the atomic mass of indium?
- Which is correct?
- Problem 69

Chapter 3

To Begin on Thursday, January 17, 2013

Hanson Activity 2-2


- Discuss Key Questions 1-8 on page 123 with your partner for five minutes.
- The clicker quiz will commence at 8:50 AM sharp.

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer

Hanson Activity 2-2

- Work Exercise #1, page 24, at the projector.
- With your partner(s), complete exercises 2-6, pages 24-25.

Atomic Masses

- By definition, the mass of a C-12 atom is exactly 12.00 amu.
- All other atomic masses are defined relative to C-12
- The average atomic mass (or atomic weight) of carbon is 12.01 amu. Why?
- 98.89% C-12 and 1.11% C-13.
- What about carbon-14?

The Mole – Why?

- Need to know how many atoms (or molecules) are in a sample.
- Experiment (carefully done) shows that in 12.0 g of C-12, there are 6.022137 x 10²³ atoms of carbon-12.
- Since the average atomic mass of natural carbon is 12.01 g, it contains 6.022137 x 10²³ atoms of natural carbon.

The Mole – Why?

- Since the average atomic mass of nitrogen is 14.01 g, a 14.01 g sample of nitrogen contains 6.022137 x 10²³ atoms of naturally occurring nitrogen.
- This number (Avogadro's Number) keeps occurring and is very large and awkward to use.

The Mole – Why?

- What to do? The distance by train from Seattle to Chicago is 3.55 x 10⁸cm or 1.40 x 10⁸ in.
- What do we do to simplify?
- If I bring donuts to the final in this class, I will need approximately 120 donuts. Do I order 120 donuts from the coffee shop?
- What do we do to simplify?

Define a convenient unit: the mole

- 1 mole (of anything) = 6.022137 x 10²³ of those things (atoms, molecules, donuts, etc)
- What is the mass of 1 mole of naturally occurring carbon?
- How many nitrogen atoms are in 2 moles of nitrogen atoms?

i .	

Fixes the amu in grams

• 12.01 g of carbon atoms contains 1 mole of carbon atoms.

 $(6.022 \times 10^{23} \text{C atoms}) = 12.01 \text{g}$

• One carbon atom has an average atomic mass of 12.01 amu.

$$(6.022 \times 10^{23} \text{ C atoms}) \left(\frac{12.01 \text{ amu}}{\text{C atom}} \right) = 12.01 \text{ g}$$

$$(6.022x10^{23})(amu) = 1g$$

Fixes the amu in grams

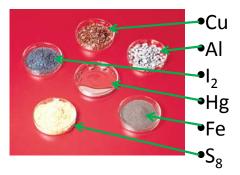
- 12.01 g of carbon atoms contains 1 mole of carbon atoms.
- One C-12 atom has an average atomic mass of 12.01 amu.

 $1\,amu = 1g/(6.022x10^{23}) = 1.66\,x\,10^{-24}\,g$

You would never waste your time memorizing this, would you?

What about molecules?

- Each molecule of ammonia NH₃ has three atoms of hydrogen and one atom of nitrogen.
- Each *mole* of NH₃ has three *moles* of hydrogen and one *mole* of nitrogen.
- Mass is conserved: the mass of one mole of ammonia is equal to the mass of three moles of hydrogen plus the mass of one mole of nitrogen.


What about molecules?

- The *atomic weight* of hydrogen is 1.008 g/mol
- The *atomic weight* of nitrogen is 14.01 g/mol
- Therefore, the molecular weight of NH₃ is:

$$mol \ wgt \ NH_3 = (1 \ mol \ N) \Biggl(\frac{14.01 g}{mol} \Biggr) + (3 \ mols \ H) \Biggl(\frac{1.008 g}{mol} \Biggr) = 17.03 g/mol$$

How many molecules of NH₃ in a 5.4 g sample? 1.9 x 10²³ molecules (or 0.317 mole)

What does a mole look like?

How large is a mole?

- Depends on element's density and atomic weight.
- For example: 1 mole of Cu has mass 63.55 g
- The density of Cu is: 8.94 g/cm³
- Volume of 1 mole of Cu is ?

7.11 cm³

- 29.6 cm³/oz , what is the volume in oz?
- Mole of Cu is about 0.24 oz or 0.03 cup.

Problem

- Suppose the mass spectrum of the Br atom consists of two peaks (Br-79 and Br-81), each with about 50% abundance.
- What would the mass spectrum of the bromine molecule, Br₂ look like?

What amount in moles is represented by 1.50 g of CO₂

- Molecular Weight of CO₂ = ?
- Number of moles = ?
- Number of molecules = ?
- Number of oxygen atoms = ?

Chloral hydrate C₂H₃Cl₃O₂ is a drug.

- What mass of chloral hydrate would contain 1.0 g of CI?
- Molecular weight of chloral hydrate? 165.39 g/mol
- How many grams of Cl per gram of chloral hydrate?

0.643 g Cl/g chloral hydrate

- What mass of chloral hydrate would contain 1.0 g of Cl?
 - 1.6 g chloral hydrate

Problem 3-33	_	
	_	
	_	
	_	
	_	
	_	