Completion of acid/base/buffer chemistry Chs 7-8 of Zumdahl

Hanson Activity 16-3

- Discuss Key Questions 1-4 of Activity 16-3, page 301, with your partner for three minutes.
- The clicker quiz will commence in 3 minutes

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer
- No paper responses will be accepted

Problem 55a

- Calculate the pH of a solution of 0.10 M HCl and 0.10 M HOCl (K_a= 3.5 x 10⁻⁸)
- What are the major species?
- What process controls the [H+]? What is the pH
- pH = 1.00
- What would be the pH of 0.10 M HOCl by itself?
- $[H^+] = 5.9 \times 10^{-5} M => pH = 4.2$

Problem 55a

- Calculate the pH of a solution of 0.10 M HCl and 0.10 M HOCl (K_a= 3.5 x 10⁻⁸)
- What are the major species?
- What process controls the [H+]? What is the pH
- pH = 1.00
- What is the concentration of OCI⁻(aq) above?
- 3.5 x 10⁻⁸ M

- Starting from $K_a = \frac{\left[H_3O^+\right]\left[CN^-\right]}{\left[HCN\right]}$
- Rearrange to give expression for [H₃O⁺]
- Take the log of both sides to give expression for -log [H₃O⁺] (be careful)
- Write it in terms of pH and pK

$$pH = pK_a + \log\left(\frac{[CN^-]}{[HCN]}\right)$$

Ex 5, p. 302

- 1.0 L of solution: 0.15 mol NaCN and 0.30 mol HCN (K_a =6.2 x 10⁻¹⁰, p K_a = 9.21)
- Assume that the ionization of HCN is small compared to its concentration of 0.30 *M*.
- With your partner what is the pH?

$$pH = pK_a + \log\left(\frac{[CN]}{[HCN]}\right) = 9.21 + \log\left(\frac{0.15M}{0.30M}\right) = 9.21 + \log(0.5) = 8.91$$

TABLE 7.2		
Values of Ka for Some	Common Monoprotic Acids	
Formula	Name	Value of K _a
HSO ₄ ⁻	Hydrogen sulfate ion	1.2×10^{-2}
HClO ₂	Chlorous acid	1.2×10^{-2}
HC2H2ClO2	Monochloracetic acid	1.35×10^{-3}
HF	Hydrofluoric acid	7.2×10^{-4}
HNO ₂	Nitrous acid	4.0×10^{-4}
HC ₂ H ₃ O ₂	Acetic acid	1.8×10^{-5}
[Al(H2O)6]3+	Hydrated aluminum(III) ion	1.4×10^{-5}
HOCI	Hypochlorous acid	3.5×10^{-8}
HCN	Hydrocyanic acid	6.2×10^{-10}
NH4+	Ammonium ion	5.6×10^{-10}
HOC ₆ H ₅	Phenol	1.6×10^{-10}

Problem 7-54

- 1.0 M HF and 1.0 M HOC₆H₅ (phenol)
- Calculate pH and [OC₆H₅-] at equilibrium
- K_a (HF) = 7.2 x 10⁻⁴; K_a (HOC₆H₅) = 1.6 x 10⁻¹⁰
- What is the strategy here?
- For HF alone, $[H^+] = 2.7 \times 10^{-2} M$
- Consider dissociation of phenol
- $[OC_6H_5^-] = 6.0 \times 10^{-9} M$, and pH = 1.57

Problem 58a,b

- Calculate the % dissocation in:
 - a) 0.50 M acetic acid ($K_a = 1.8 \times 10^{-5}$)
 - b) 0.050 M acetic acid($K_a = 1.8 \times 10^{-5}$)
- For (a), calculate $[H^+]=3.0 \times 10^{-3} M$
- % dissoc = $100 \times (3.0 \times 10^{-3} M)/(0.50 M) = 0.6\%$
- For (b), calculate $[H^+]=9.5 \times 10^{-4} M$
- % dissoc = $100 \times (9.5 \times 10^{-4} M)/(0.050 M) = 1.9\%$

General observation: % dissociation increases as solution becomes more dilute.

Problem 53

- Aspirin tablet = 32.5 mg, HC₉H₇O₄
- Two tablets in 237 mL of solution.
- MW = 180.15 g/mol
- $K_a = 3.3 \times 10^{-4}$
- What is the pH?
- 2.68

Polyprotic Acids

Table 7.4

Name	Formula	K_{s_i}	K_{a_1}	K_{s_1}
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}
Arsenic acid	H ₁ AsO ₄	5×10^{-3}	8×10^{-8}	6×10^{-10}
Carbonic acid*	H ₂ CO ₃	4.3×10^{-7}	4.8×10^{-11}	
Sulfuric acid	H ₂ SO ₄	Large	1.2×10^{-2}	
Sulfurous acid	H ₂ SO ₃	1.5×10^{-2}	1.0×10^{-7}	
Hydrosulfuric acid†	H ₂ S	1.0×10^{-7}	$\approx 10^{-19}$	
Oxalic acid	H ₂ C ₂ O ₄	6.5×10^{-2}	6.1×10^{-5}	
Ascorbic acid (vitamin C)	$H_2C_6H_6O_6$	7.9×10^{-5}	1.6×10^{-12}	

^{*}This is really $CO_2(aq)$. The K_{s_2} value for H_2S is quite uncertain. Its small size makes it very difficult to measure.

Polyprotic Acids: H₃PO₄

$$H_{3}PO_{4}(aq) = H^{+}(aq) + H_{2}PO_{4}^{-}(aq); K_{a1} = 7.5 \times 10^{-3}$$

$$H_{2}PO_{4}^{-}(aq) = H^{+}(aq) + HPO_{4}^{2-}(aq); K_{a2} = 6.2 \times 10^{-8}$$

$$HPO_{4}^{2-}(aq) = H^{+}(aq) + PO_{4}^{3-}(aq); K_{a3} = 4.8 \times 10^{-13}$$

- Which ionization will determine the hydrogen ion concentration?
- What will be the major species?
- What are the ratios of the successive equilibrium constants?

Problem 85: H₃AsO₄

$$H_3AsO_4(aq) = H^+(aq) + H_2AsO_4^-(aq); K_{a1} = 5 \times 10^{-3}$$

 $H_2AsO_4^-(aq) = H^+(aq) + HAsO_4^{2-}(aq); K_{a2} = 8 \times 10^{-8}$
 $HAsO_4^{2-}(aq) = H^+(aq) + AsO_4^{3-}(aq); K_{a3} = 6 \times 10^{-10}$

- What is the pH in 0.2M arsenic acid?
- $[H^+] = [H_2AsO_4] = 2.9 \times 10^{-2} M$, pH = 1.54
- $K_{a2} << K_{a1}$

Problem 85: H₃AsO₄

$$\begin{split} & H_{3} As O_{4}(aq) = H^{+}(aq) + H_{2} As O_{4}^{-}(aq); K_{a1} = 5 \times 10^{-3} \\ & H_{2} As O_{4}^{-}(aq) = H^{+}(aq) + HAs O_{4}^{2-}(aq); K_{a2} = 8 \times 10^{-8} \\ & HAs O_{4}^{2-}(aq) = H^{+}(aq) + As O_{4}^{3-}(aq); K_{a3} = 6 \times 10^{-10} \end{split}$$

- $[H^+] = [H_2AsO_4^-] = 2.9 \times 10^{-2} M$, pH = 1.54
- What is the concentration of $HAsO_4^{2-}$?

$$K_{a2} = \frac{\left[HAsO_4^{2-} \right] H^+}{\left[H_2 AsO_4^- \right]} = \frac{\left(2.9 \times 10^{-2} \right) \left[HAsO_4^{2-} \right]}{2.9 \times 10^{-2}} = 8 \times 10^{-8}$$

Hanson Activity 16-3

- Discuss Key Questions 5-8 of Activity 16-3, page 304, with your partner for three minutes.
- The clicker quiz will commence in 3 minutes

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer
- No paper responses will be accepted

Ex 7, p.304

- Calculate the pOH of a 0.30 M solution of NaOH.
- 0.52
- What is the pH?
- 13.48

Ex 8, p.305

- Calculate the pOH of 0.30 M NH $_3$ (K_b =1.8 x 10⁻⁵)
- 2.63
- The pH?
- 11.37

Problem 69

- Calculate the concentration of a Ba(OH)₂ solution with pH = 10.50.
- 1.6 x 10⁻⁴ M

Problem 71

- Hydrazine N_2H_4 is a weak base in water $(K_b=3.0 \times 10^{-6})$
- It reacts as:

 $\mathrm{H_2NNH_2}(aq) + \mathrm{H_2O}(l) = \mathrm{H_2NNH_3^+}(aq) + \mathrm{OH^-}(aq)$

- Calculate the concentration of all species in a 2.0 M solution of hydrazine.
- What is the pH?
- 11.38

_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				
_				

Problem 79 a,b

- What is percent ionization in
 - a) 0.10 M NH₃
 - b) 0.010 M NH₃
 - c) 1.3%
 - d) 4.2%

Hanson Activity 16-3

- Discuss Key Questions 9-10of Activity 16-3, page 306, with your partner for three minutes.
- The clicker quiz will commence in 3 minutes

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer
- No paper responses will be accepted

Exercise 9, p.307

- With your partner, examine the example for HCN
- Work out one example with your partner:
 - Rows 1-2: NH₄+
 - Rows 3-4: H₂CO₃
 - Rows 5-6: H₃O+
 - Row 7: H₂O

Problem 93 a,b

Rank the following 0.10 M solutions in order of increasing pH:

- a) HI, HF, NaF, NaI
- b) NH₄Br, HBr, KBr, NH₃

Problem 95 a,c

Are these acidic, basic, or neutral? Why?

- Sr(NO₃)₂
- C₅H₅NHF (look at Table 7.3)

Problem 95 a,c
Are these acidic, basic, or neutral? Why?
• C ₅ H ₅ NHF (look at Table 7.3)
- Dissolves as C5H5NH ⁺ (aq) + F ⁻ (aq)
$-C_5H_5N$ (pyridine) is a weak base, $K_b=1.7 \times 10^{-9}$
$-$ HF is a weak acid (K_a =7.2 x 10 ⁻⁴)
– What is K _a of the conjugate acid?
– What is K _b of F ⁻ ?

Problem 99

- 0.050 M solution of NaB(aq), pH = 9.00. (find K_b)
- What is the pH of 0.010 M HB(aq) ? (find K_a)
- 3.66

Chapter 8 - buffers

-				
-				
-				
-				
_				
_				
-				
-				
-				
_				
_				
_				
_				
-				
-				
-				
-				
_				

Hanson Activity 17-1

- Discuss Key Questions 1-7 of Activity 17-1, page 306, with your partner for five minutes.
- The clicker quiz will commence in 5 minutes

Clicker quiz

- You may refer to your Hanson workbook
- Answer the questions individually
- In each case indicate the best answer
- No paper responses will be accepted

Ex 2, p.371

- Calculate pH of solution 0.150 M in HAc (K_a=1.8x10⁻⁵) and 0.300 M in NaAc
- Use the equation under Beaker B of the model
- pH = 5.05

•		
•		
•		
•		
•		
•		
•		
•		

Ex 3, p. 311

- For ammonia/ ammonia chloride buffer, what ratio of [NH₃]/[NH₄+] is needed for pH = 8.55?
- $K_a = 5.6 \times 10^{-10}$
- $[NH_3]/[NH_4^+] = .2/1 \text{ or } 1/5$

Ex 4, p. 311

- Are these buffers?
- a) 0.10 M KNO_3 and 0.1 M HNO_3
- b) 0.10 M NaNO₂ and 0.1 M HNO₂
- c) 0.10 M HCl and 0.1 M NH₃ (what reaction takes place?)
- d) 0.20 M HCl and 0.1 M $\mathrm{NH_3}$
- e) 0.10 M HCl and 0.2 M $\mathrm{NH_3}$

Problem 21d

- Calculate the pH of 0.100 M $HC_3H_5O_2$ (K_a =1.3 x10⁻⁵) and 0.100 M $NaC_3H_5O_2$.
- 4.89

•	
-	

Problem 31

- 25.1 g of HC₇H₅O₂ (MW = 122.12 g/mol) and 37.7 g of NaC₇H₅O₂ (MW = 144.10 g/mol) in 200.0 mL of solution. What is the pH?
- 4.37

Problem 35

- Given a 1.0 L solution of 1.0 M sodium acetate, NaC₂H₃O₂, how many moles of HCl must be added to produce a pH=4.20 buffer?
- K_a for acetic acid = 1.8 x 10⁻⁵, p K_a = 4.74
- What ratio of acetic acid to acetate ion is needed?
- 0.78 mol

Problem 47

- In Table 7.2, which acid is best choice for making a 7.00 buffer?
- Use HOCl could add NaOCl to adjust the acid/base ratio to get exactly 7.00.

-	

	Table 7-2		
Table 7.2			
alues of K _a for Some	e Common Monoprotic Acids		
Formula	Name	Value of K _a	
HSO ₄ -	Hydrogen sulfate ion	1.2×10^{-2}	
HClO ₂	Chlorous acid	1.2×10^{-2}	I.
HC,H,ClO,	Monochloracetic acid	1.35×10^{-3}	100
HF	Hydrofluoric acid	7.2×10^{-4}	1 2
HNO ₂	Nitrous acid	4.0×10^{-4}	9
HC ₂ H ₃ O ₂	Acetic acid	1.8×10^{-5}	100
$[Al(H_2O)_6]^{3+}$	Hydrated aluminum(III) ion	1.4×10^{-3}	i i
HOCI	Hypochlorous acid	3.5×10^{-8}	SES
HCN	Hydrocyanic acid	6.2×10^{-10}	Increasing acid strength
NH ₄ +	Ammonium ion	5.6×10^{-10}	17
HOC ₆ H ₅	Phenol	1.6×10^{-10}	

Table 7.3			
alues of $K_{\rm b}$ for So	me Common We	ak Bases	
Name	Formula	Conjugate Acid	K_{b}
Ammonia	NH ₃	NH ₄ ⁺	1.8×10^{-5}
Methylamine	CH ₃ NH ₂	CH ₃ NH ₃ ⁺	4.38×10^{-4}
Ethylamine	$C_2H_5NH_2$	C2H5NH3+	5.6×10^{-4}
Aniline	$C_6H_5NH_2$	$C_6H_5NH_3^+$	3.8×10^{-10}
Pyridine	C_sH_sN	C ₅ H ₅ NH ⁺	1.7×10^{-9}

Table 7.4 itepwise Dissociation Constants for Several Common Polyprotic Acids				
Name	Formula	K_{a_1}	K _{a2}	K_{a_1}
Phosphoric acid	H ₃ PO ₄	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-1}
Arsenic acid	H ₃ AsO ₄	5×10^{-3}	8×10^{-8}	6×10^{-10}
Carbonic acid*	H ₂ CO ₃	4.3×10^{-7}	4.8×10^{-11}	
Sulfuric acid	H ₂ SO ₄	Large	1.2×10^{-2}	
Sulfurous acid	H ₂ SO ₃	1.5×10^{-2}	1.0×10^{-7}	
Hydrosulfuric acid†	H ₂ S	1.0×10^{-7}	$\approx 10^{-19}$	
Oxalic acid	$H_2C_2O_4$	6.5×10^{-2}	6.1×10^{-5}	
Ascorbic acid (vitamin C)	$H_2C_6H_6O_6$	7.9×10^{-5}	1.6×10^{-12}	