Format for sd_sd2m_l*.dat Data Files

The data are listed as one line per star, with each line containing the following quantities:

- ral dec1: right ascension and declination (J2000.0) in decimal degrees, as measured by SDSS
- run: SDSS observing night identifier
- iso: isolated source flag; set to 1 if this object is a single CHILD of its PARENT
- rext: the value of the r band ISM extinction from the SFD maps
- **u** g **r i** z: SDSS photometry (not corrected for the ISM extinction)
- uerr gerr rerr ierr zerr: SDSS photometric errors
- **bmod:** the best-fit SED model from the Covey et al. (2007) Table 1 (an SDSS-2MASS high galactic latitude sample parametrized by the g i color into 228 steps along the main stellar locus); the fit is based on SDSS photometry only
- **bar:** the best-fit r band extinction
- **bchi2:** the best-fit χ^2 (per degree of freedom)
- a, b, c: the best-fit parameters for ellipsoidal approximation to the χ^2 surface (see below)
- ellchi, elldf: total χ^2 and χ^2 per degree of freedom for best-fit ellipsoidal approximation to the true χ^2 surface
- gi: the g i color for the best-fit SED
- dist: distance (pc) computed using the above g i color, extinction-corrected r band magnitude, and expressions for Mr(g i, [Fe/H]) from Ivezić et al. (2008), with [Fe/H] = -0.4. These expressions are valid *only* for main sequence stars. For example, giants will have badly underestimated distances (and they can be seen as such in **bar** vs. **dist** plots made for small sky regions).
- ra2 dec2: 2MASS position
- delta: distance between SDSS and 2MASS positions (arcsec)

- **j** h k: 2MASS photometry. Original 2MASS values are placed on AB scale following Finlator et al. (2000): $J_{AB} = J_{2MASS} + 0.89$, $H_{AB} = H_{2MASS} + 1.37$, $K_{AB} = K_{2MASS} + 1.84$. Note that colors tabulated in Covey et al. use original 2MASS magnitudes (on Vega scale).
- jerr herr kerr: 2MASS photometric errors
- **bmod2**: the best-fit model from the Covey et al. Table 1 for the fit based on SDSS and 2MASS photometry
- **bar2**: the best-fit *r* band extinction
- **bchi22:** the best-fit χ^2 (per degree of freedom)
- a2, b2, c2, ellchi2, elldf2, gi2, dist2: analogous to (a, b, c, ellchi, elldf, gi, dist), except here for the SDSS-2MASS based best fit

The best-fit SED and A_r are found by searching for the minimum χ^2 among 228 Covey et al. SEDs and 500 values of A_r (0–10 range with 0.02 mag steps). Once the minimum χ^2 is located, χ^2_{min} , an ellipse is fit to the section of the χ^2 surface defined by $\chi^2 < \chi^2_{min} + 6.17$ (i.e., within 2σ deviation for 2 degrees of freedom):

$$\chi^2(m, A_r) = a(m - m^*)^2 + b(m - m^*)(A_r - A_r^*) + c(A_r - A_r^*)^2$$
(1)

were *m* is the model index, and m^* and A_r^* are the values corresponding to χ^2_{min} . Using the best-fit parameters *a*, *b* and *c*, the (marginalized) model and A_r errors can be computed from

$$\sigma_m = \left(a - \frac{b^2}{4c}\right)^{-\frac{1}{2}} \tag{2}$$

$$\sigma_A = \left(c - \frac{b^2}{4a}\right)^{-\frac{1}{2}} \tag{3}$$

The χ^2 surface for stars with $\chi^2_{min} > 200$ is not fit with an ellipse and such stars are instead marked as bad fits (can be recognized by $\chi^2_{min} > 200$, error code for other parameters is 9999).