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Sloan Digital Sky Survey(s)

• Imaging Survey

– 10,000 deg2 (1/4 of the full sky)

– 5 bands (ugriz: UV-IR), 0.02 mag photometric accuracy

– < 0.1 arcsec astrometric accuracy

– 100,000,000 stars and 100,000,000 galaxies

• Spectroscopic Survey: two multi-object fiber spectrographs

on the same telescope. Each plate (radius of 1.49 degrees)

can accommodate 640 fibers. Targets selected from imaging

data: 1,000,000 galaxies, 100,000 quasars, 100,000 stars
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Spectroscopic Targets:

• Galaxies: simple flux limit for “main” galaxies, flux-color cut

for luminous red galaxies (cD)

• Quasars: flux-color cut, matches to FIRST survey

• Non-tiled objects (color-selected): calibration stars (16/640),

interesting stars (hot white dwarfs, brown dwarfs (tiled), red

dwarfs, C stars, CV, BHB, PN stars), sky

SDSS Data Release 5: 675,000 galaxies, 90,000 quasars, 155,000

stars.
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Spectroscopic Data and Processing

• Spectra: Wavelength coverage: 3800–9200 Ang, Resolution:

1800, Signal-to-noise: >4 per pixel at g=20.2: These spectra

have much better quality than needed for a redshift survey of

galaxies; they are publicly available in a user-friendly format

through an exquisite web interface at www.sdss.org

• Pipelines:

– spectro2d: Extraction of spectra, sky subtraction, wave-

length and flux calibration, combination of multiple expo-

sures

– spectro1d: Object classification, redshifts determination,

measurement of line strengths and line indices

– target: target selection and tiling
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The Utility of SDSS Stellar Spectra

1. Calibration of observations (e.g. can synthesize photometry

with an accuracy of ∼0.04 mag)

2. More accurate and robust source identification than based

on photometric data alone: e.g. confirmation of unresolved

binaries, low-metallicity stars, cold white dwarfs, L and T

dwarfs, C stars, CVs, etc.

3. Accurate stellar parameters estimation (Teff, log(g), metal-

licity, detailed chemical composition)

4. Radial velocity for kinematic studies of the Milky Way (es-

pecially useful when combined with proper motions)
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Source Identification
• Stellar spectroscopic targets are color-

selected, as illustrated in the top left figure

• A spectrum is required to secure a robust

identification, as well as for a detailed mea-

surement of the source properties

• Bottom left: an example of a C star: SDSS

has discovered 95% of all known dwarf C

stars (Margon et al. 2006)

• Bottom right: an example of an L dwarf

(SDSS has discovered the first known field

T dwarf, Strauss et al. 2000)
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Stellar Parameters Estimation
• SDSS stellar spectra are of sufficient

quality to provide robust and accurate

stellar parameters such as effective tem-

perature, gravity, metallicity, and detailed

chemical composition (c.f. poster by T.

Beers)

• Stellar parameters estimated from spec-

tra show a good correlation with colors

measured from imaging data

• Top left: the median effective tempera-

ture as a function of the position in the

g − r vs. u − g diagram (from 4000 K to

10,000 K, red to blue)

• Bottom left: zoomed-in version of the

top left figure

• Photometric estimate of effective tem-

perature: Teff determines the g − r color,

but has negligible impact on the u−g color
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Stellar Parameters Estimation
• Stellar parameters estimated from spec-

tra show a good correlation with colors

measured from imaging data

• Top left: the median metallicity as a

function of the position in the g − r vs.

u− g diagram (from −0.5 to −2.5, red to

blue)

• Bottom left: zoomed-in version of the

top left figure

• Photometric estimate of metallicity: can

be determined with an error of ∼0.3 dex

(relative to spectroscopic estimate) from

the position in the g − r vs. u − g color-

color diagram using simple expressions

• This finding is important for studies based

on photometric data alone, and also

demonstrates the robustness of parame-

ters estimated from spectroscopic data
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The Milky Way Metallicity Distribution
• SDSS has provided a large sample to interest-

ingly large distances, with robust and accurate

stellar parameters, and good photometric dis-

tance estimates

• Top left: the median metallicity as a function

of the height above the Galactic plane (a sam-

ple with 0.25 < g − r < 0.35)

• Middle left: metallicity distribution between 1

kpc and 2 kpc above the plane

• Bottom left: the median metallicity for a sub-

sample with [Z/Z�] > −1.3 as a function of the

cylindrical galactic coordinates R and Z (for

the low-metallicity subsample, there is no dis-

cernible dependence)

• The metallicity distribution is bimodal. The

median metallicity for the [Z/Z�] < −1.3 sub-

sample is nearly independent of R and Z, while

it decreases with Z for the [Z/Z�] > −1.3 sub-
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The Kinematics vs. Metallicity
Distribution

• Top left: the radial velocity vs. metallicity for

stars with 1 kpc < Z <2 kpc

• Middle left: the radial velocity vs. metallicity

for stars with 160 < l < 200 (towards anticen-

ter, corresponds to vR velocity component)

• Bottom left: the radial velocity distribution

for the low- and high-metallicity subsamples

• The kinematics depend on metallicity: the low-

metallicity subsample has 2.5 times larger ve-

locity distribution.

• This has been known for over half a century

since the ELS paper (Eggen, Lynden-Bell and

Sandage, 1962), but here it is reproduced with

a 100 times larger sample!

• With SDSS samples, we can study the ELS

conclusions as a function of the position in the

Galaxy! (i.e. not only in the solar neighbor-

hood) 11



The Spatial Variation of Kinematics
• Top left: the median radial velocity in Lambert

projection (b>0) for stars from the [Z/Z�] >

−1.3 subsample which have 1 kpc < Z < 2

kpc, color-coded from -100 km/s to 100 km/s

(blue to red)

• Middle left: same as the top panel, except for

the low-metallicity sample, color-coded from -

220 km/s to 220 km/s

• Bottom left: the middle panel corrected for

the solar motion, the green shade corresponds

to 0 km/s

• The kinematics depend on metallicity: the low-

metallicity subsample does not rotate, and the

high-metallicity sample rotates slower than the

LSR.
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The Spatial Variation of Kinematics
• Top left: the radial velocity dispersion in

Lambert projection (b>0) for stars from the

[Z/Z�] > −1.3 subsample which have 1 kpc

< Z < 2 kpc, color-coded from 40 km/s to

160 km/s (blue to red)

• Middle left: the radial velocity distributions for

low-metallicity stars with l ∼ 90 and l ∼ 180.

• Bottom left: the same as the top panel, ex-

cept for the high-metallicity sample

• Low-metallicity stars observed at high galactic

latitudes towards anticenter have anomalously

large velocity dispersion (∼130 km/s, instead

of 100 km/s)

• This effect is not observed for the high-

metallicity sample using the same data set.

The same region shows anomalous rotational

component for the low-metallicity sample (de-

termined from proper motion measurements)
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“6D” Kinematics
• Top left: longitudinal proper

motion in the Y=0 plane (l ∼ 0

and l ∼ 180) for low-metallicity

stars; color-coded linearly from

blue (small) to red (large)

• Top right: rotational velocity

corresponding to the top left

• Middle panels: same as the top

two panels, except for the high-

metallicity sample

• Bottom panels: the median ro-

tational velocity (left) and its dis-

persion (right) vs. height Z for

low- (blue) and high-metallicity

(red) samples

• Differential disk rotation:

smoothly decreasing from 220

km/s in the plane to 0 at ∼4

kpc (Bond et al. 2006).14



Summary

• SDSS has already obtained high-quality spectra for over 150,000

stars that are publicly available and can be used for source

identification, stellar parameter estimation, and kinematic

studies

• Stellar parameter estimates by Beers et al. show a good

correlation with the position of a star in the g − r vs. u − g

color-color diagram

• The metallicity distribution is bimodal. The median metal-

licity for the [Z/Z�] < −1.3 subsample is nearly independent

of R and Z, while it decreases with Z for the [Z/Z�] > −1.3

• The kinematics depend on metallicity: the low-metallicity

subsample has 2.5 times larger velocity dispersion.
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• Halo (low-metallicity stars) doesn’t rotate (at the ∼10 km/s
level); the rotational velocity of disk stars decreases smoothly
(as well as the dispersion for all three components) with the
height above the Galactic plane

• The sample size is sufficiently large to constrain the global
behavior and look for anomalies. E.g. low-metallicity stars
observed at high galactic latitudes towards anticenter have
anomalously large velocity dispersion and non-zero rotational
component in a well-defined (l, b) region (due to streams?)

• SDSS stellar spectra will remain a valuable resource for a
long time: e.g. RAVE doesn’t go as deep, GAIA will not
have such a large wavelength coverage, Pan-STARRS and
LSST will only have imaging

• SDSS-II (SEGUE) will further advance this dataset by opti-
mizing spectroscopic targeting to study the Galaxy


