



UNIVERSITÀ

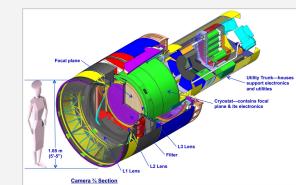
**DEGLI STUDI** 

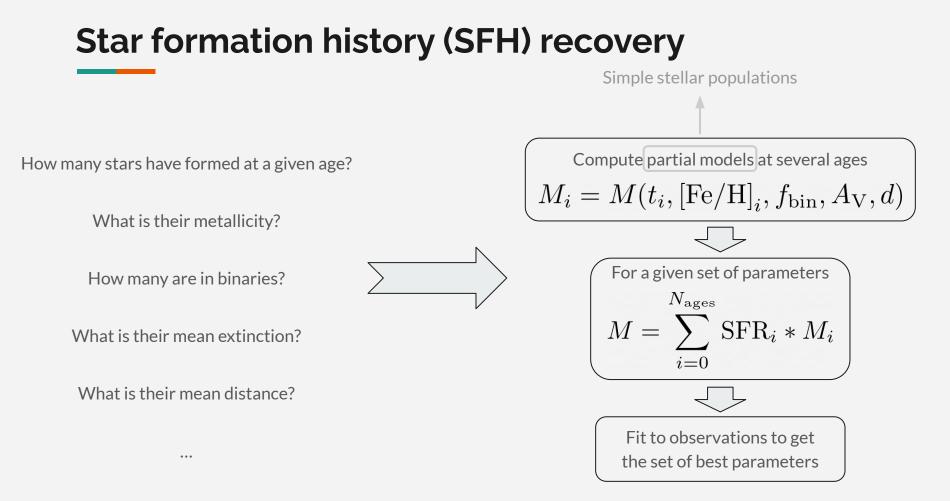
DI PADOVA



# Investigating the star formation history of nearby galaxies

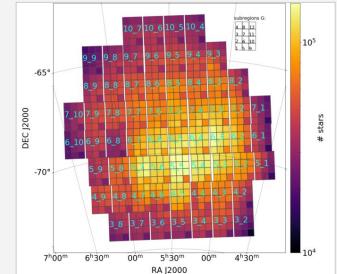
Alessandro Mazzi PostDoc @ Università di Padova, Italy

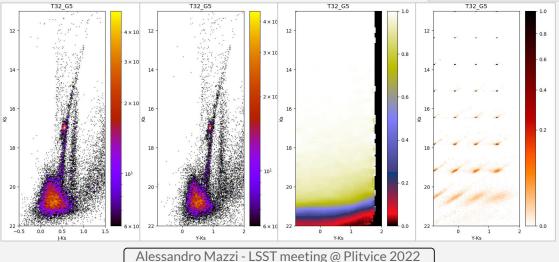

### **Overview**


- 1. Rubin LSST
- 2. SFH recovery
- 3. The resolved SFH of the LMC Mazzi et al. 2021
- 4. Adding the spatial correlation
- 5. Conclusion & future prospects

### **Rubin LSST**

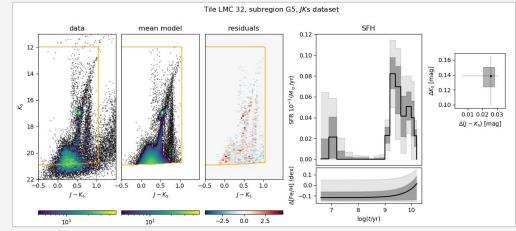
- All sky below  $\delta$ =34.5°
- Fov of 9.6 deg<sup>2</sup>, covered by 3.2 Gigapixels (189 CCDs)
- Seeing-limited image quality across a wide wavelength interval (320-1050 nm)
- Single visit typical  $5\sigma$  depth in r ~24.5 mag
- After 10 years precise parallaxes for sources deeper than Gaia's limit
- Milky Way
  - Solar neighborhood
  - o Disk, Halo, Bulge
  - Clusters
- Streams
- Magellanic Clouds
- Dwarf galaxies (Sagittarius, ...)
- ...



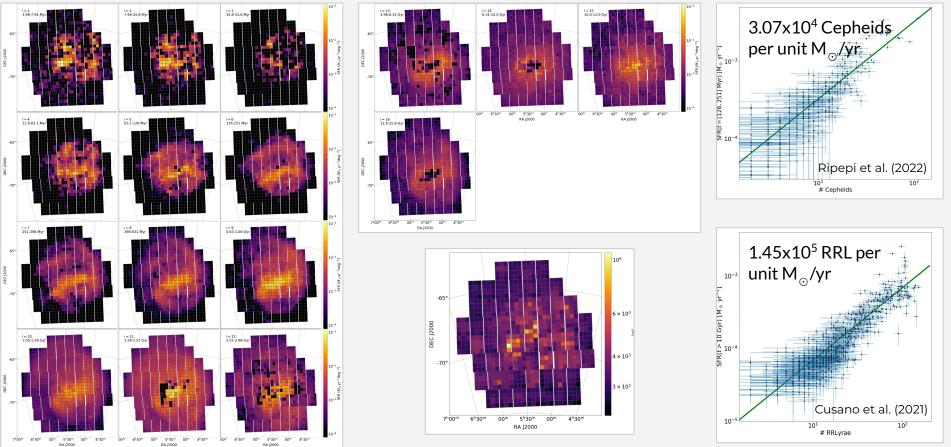


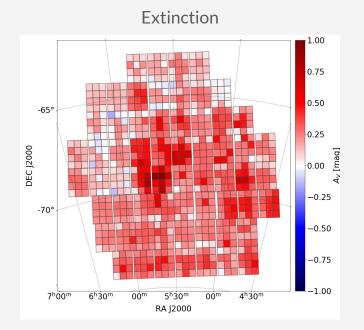

- Deep PSF photometry in Y, J and Ks for 105 deg<sup>2</sup> from the VMC survey (Cioni et al. 2011)
- 63 tiles, 12 sub-tiles each  $\rightarrow$  756 separate regions
- Hess diagrams (0.04 mag bins)
  - 11< Ks< 22 mag
  - -0.5 < J-Ks < 1.5 mag</li>
  - -0.8 < Y-Ks < 1.2 mag


#### • Completeness and errors from artificial star tests

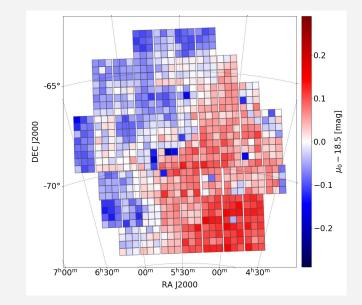





- Synthetic models produced with TRILEGAL (Girardi et al., 2005)
  - Kroupa IMF
  - 16 age bins
  - $\circ \qquad \text{Convolution with errors from AST}$
  - Milky Way foreground
- Only consider 12< Ks < mag@75% completeness
- Two step fitting
  - Nelder-Mead optimization (only SFR)
  - Markov chain Monte Carlo (all parameters)
- Parameters
  - **16 SFR**
  - 3 [Fe/H]
  - magnitude shift (distance+ $A_v$ )
  - $\circ$  color shift (A<sub>V</sub>)

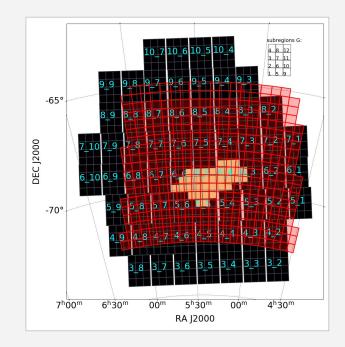

| i  | log (t/yr) | $\Delta t$ (yr)      | [Fe/H] <sub>0</sub><br>interval (dex) |
|----|------------|----------------------|---------------------------------------|
| 1  | 6.6, 6.9   | $3.96 \times 10^{6}$ | -0.19, -0.19                          |
| 2  | 6.9, 7.2   | $7.91 \times 10^{6}$ | -0.19, -0.19                          |
| 3  | 7.2, 7.5   | $1.58 \times 10^{7}$ | -0.19, -0.19                          |
| 4  | 7.5, 7.8   | $3.15 \times 10^{7}$ | -0.19, -0.19                          |
| 5  | 7.8, 8.1   | $6.28 \times 10^{7}$ | -0.19, -0.19                          |
| 6  | 8.1, 8.4   | $1.25 \times 10^{8}$ | -0.19, -0.19                          |
| 7  | 8.4, 8.6   | $2.50 \times 10^{8}$ | -0.19, -0.19                          |
| 8  | 8.6, 8.8   | $2.32 \times 10^{8}$ | -0.19, -0.19                          |
| 9  | 8.8, 9.0   | $3.69 \times 10^{8}$ | -0.19, -0.19                          |
| 10 | 9.0, 9.2   | $5.85 \times 10^{8}$ | -0.19, -0.25                          |
| 11 | 9.2, 9.4   | $9.17 \times 10^{8}$ | -0.25, -0.36                          |
| 12 | 9.4, 9.6   | $1.47 \times 10^{9}$ | -0.36, -0.49                          |
| 13 | 9.6, 9.8   | $2.33 \times 10^{9}$ | -0.49, -0.60                          |
| 14 | 9.8, 10.0  | $3.69 \times 10^{9}$ | -0.60, -0.95                          |
| 15 | 10.0, 10.1 | $2.59 \times 10^{9}$ | -0.95, -2.07                          |
| 16 | 10.1, 10.2 | $3.26 \times 10^{9}$ | -2.07, -3.18                          |




## The resolved SFH of the LMC

Mazzi et al. (2021)






Distance shift

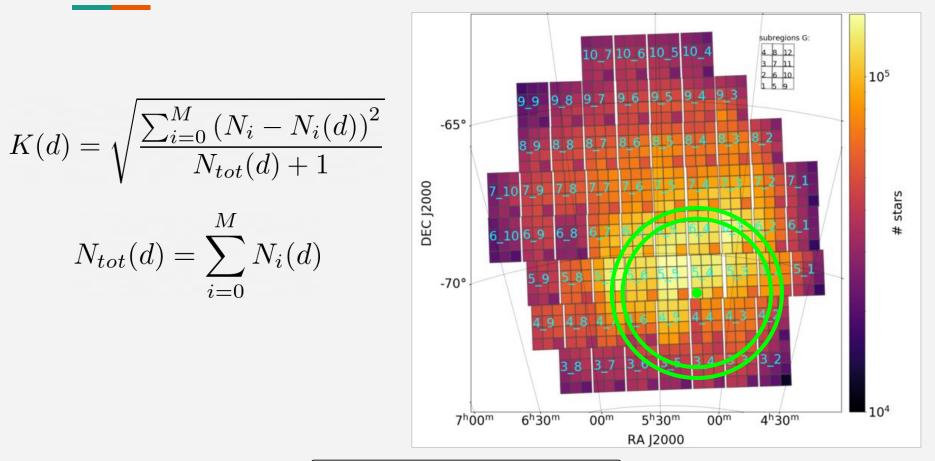


For the common 57.42 deg<sup>2</sup> area For the common less crowded 52.92 deg<sup>2</sup> area 800 HZ09 HZ09 600 this work, YKs this work, YKs 700 this work, IKs this work, IKs 500 600 267 [10<sup>-3</sup>M<sub>o</sub> /yr] 200 000 200 000 SFR [10<sup>-3</sup>M<sub>°</sub> /yr] 400 300 200 200 100 100 0 0 9.5 6.5 7.0 7.5 8.0 8.5 9.0 10.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 log(t/yr) log(t/yr)

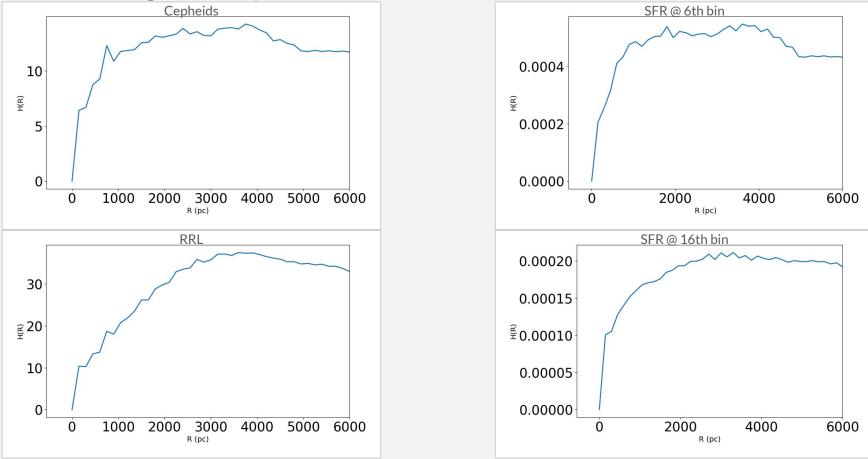
Comparison to Harris & Zaritsky (2009) [resampled]



### Adding the spatial correlation


Why?

Old population should have smooth distribution, young one should be clumpy instead


Change SFR prior to correlated one (gaussian process)

$$P(\theta_1, \dots, \theta_n) = \frac{\exp\left(-\frac{1}{2}(\theta - \mu)^{\mathrm{T}} K^{-1}(\theta - \mu)\right)}{\sqrt{(2\pi)^n |K|}}$$
Multivariate Gaussian
$$K_{i,j} = k(\mathbf{r}_i, \mathbf{r}_j) = \sigma^2 \exp\left\{-\frac{|\mathbf{r}_i, \mathbf{r}_j|^2}{l^2}\right\}$$
Kernel
Age dependence
$$l = l(\text{age}) =?$$

### Adding the spatial correlation: in the data?



### Adding the spatial correlation: in the data?



### Conclusions

- LSST will produce high quality photometry over a large portion of the sky
- Targets:
  - Milky Way
  - LMC & SMC
  - Local Group galaxies
- Current resolved SFH recovery methods might provide very noisy results
  - SFR holes
  - Extinction
  - Distance
- Add correlation to smooth the result
- Required:
  - Deep photometry of the stacks
  - $\circ \qquad \mathsf{AST} \, \mathsf{of} \, \mathsf{area} \, \mathsf{of} \, \mathsf{interest}$
  - $\circ \qquad {\sf Task force crowded field photometry}$

- Who we are working with
  - Julianne Dalcanton
  - Rodrigo Luger
  - Morgan Fouesneau
  - Gregory Green

# THANK YOU!